<span>Cu⁺ is the only one of the ions in the list that will show 8 electrons in a d sublevel....its configuration will be Ar| 4s² 3d⁸
hope this helps</span>
Answer:
Sr(s) + C(s) + 3/2 O₂(g) → SrCO₃(s)
Explanation:
The standard enthalpy of formation (ΔH°f) is the energy involved in the formation of 1 mole of a substance from its elements in their most stable states. The chemical equation for the formation of SrCO₃(s) is the following.
Sr(s) + C(s) + 3/2 O₂(g) → SrCO₃(s)
Answer:
0.66g of water
Explanation:
Molar heat of vaporization of any substance is defined as the heat necessary to vaporize 1 mole of the substance.
If heat of vaporization of water is 40.79kJ/mol and you add 1.50kJ, the moles you vaporize are:
1.50kJ × (1mol / 40.79kJ) = 0.0368 moles of water.
As molar mass of water is 18.01g/mol, mass of water that can be vaporized are:
0.0368 moles × (18.01g / mol) = <em>0.66g of water</em>
Answer:
Explanation:
<u>1) Data:</u>
a) Hypochlorous acid = HClO
b) [HClO} = 0.015
c) pH = 4.64
d) pKa = ?
<u>2) Strategy:</u>
With the pH calculate [H₃O⁺], then use the equilibrium equation to calculate the equilibrium constant, Ka, and finally calculate pKa from the definition.
<u>3) Solution:</u>
a) pH
b) Equilibrium equation: HClO (aq) ⇄ ClO⁻ (aq) + H₃O⁺ (aq)
c) Equilibrium constant: Ka = [ClO⁻] [H₃O⁺] / [HClO]
d) From the stoichiometry: [CLO⁻] = [H₃O⁺] = 2.29 × 10 ⁻⁵ M
e) By substitution: Ka = (2.29 × 10 ⁻⁵ M)² / 0.015M = 3.50 × 10⁻⁸ M
f) By definition: pKa = - log Ka = - log (3.50 × 10 ⁻⁸) = 7.46