1.5052g BaCl2.2H2O => 1.5052g / 274.25 g/mol = 0.0054884 mol
=> 0.0054884 mol Ba
<span>This means that at most 0.0054884 mol BaSO4 can form since Ba is the limiting reagent. </span>
<span>0.0054884 mol BaSO4 => 0.0054884 mol * 233.39 g/mol = 1.2809 g BaSO4</span>
Answer:
The Michaelis‑Menten equation is given as
v₀ = Kcat X [E₀] X [S] / (Km + [S])
where,
Kcat is the experimental rate constant of the reaction; [s] is the substrate concentration and
Km is the Michaelis‑Menten constant.
Explanation:
See attached image for a detailed explanation
Answer:
58.6 % by mass of Na₂CO₃
Explanation:
This is the reaction:
Na₂CO₃ + MgCO₃ + 4HCl → MgCl₂ + 2NaCl + 2CO₂ + 2H₂O
Let's find out the moles of CO₂ produced, by the Ideal Gases Law
1.24 atm . 1.67 L = n . 0.082 . 299K
(1.24 atm . 1.67 L / 0.082 . 299K) = n
0.0844 moles = n
Ratio is 2:1, so 2 moles of dioxide were produced by 1 mol of sodium carbonate. Let's make a rule of three:
2 moles of CO₂ were produced by 1 mol of Na₂CO₃
Then, 0.0844 moles of Co₂ would beeen produced by (0.0844 .1)/2 = 0.0422 moles of Na₂CO₃.
Let's convert this moles into mass (mol . molar mass)
0.0422 mol . 106 g/mol = 4.47 g
Finally we can know the mass percent of sodium carbonate in the mixture
(Mass of compound /Total mass) . 100 → (4.47 g / 7.63g) . 100 = 58.6 %
Atomic mass Ni = 58.69 a.m.u
58.69 g ----------------- 6.02x10²³ atoms
?? g --------------------- 7.5x10¹⁵ atoms
58.69x (7.5x10¹⁵) / 6.02x10²³
=> 7.31x10⁻⁷ g
The answer should be <span>enteropeptidase
</span>