answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Bogdan [553]
2 years ago
10

A 0.580 g sample of a compound containing only carbon and hydrogen contains 0.480 g of carbon and 0.100 g of hydrogen. At STP, 3

3.6 mL of the gas has a mass of 0.087 g. What is the molecular (true) formula for the compound
Chemistry
1 answer:
Sati [7]2 years ago
7 0

Answer:

Molecular formula for the gas is: C₄H₁₀

Explanation:

Let's propose the Ideal Gases Law to determine the moles of gas, that contains 0.087 g

At STP → 1 atm and 273.15K

1 atm . 0.0336 L = n . 0.082 . 273.15 K

n = (1 atm . 0.0336 L) / (0.082 . 273.15 K)

n = 1.500 × 10⁻³ moles

Molar mass of gas = 0.087 g / 1.500 × 10⁻³ moles = 58 g/m

Now we propose rules of three:

If 0.580 g of gas has ____ 0.480 g of C _____ 0.100 g of C

58 g of gas (1mol) would have:

(58 g . 0.480) / 0.580 = 48 g of C  

(58 g . 0.100) / 0.580 = 10 g of H

 48 g of C / 12 g/mol = 4 mol

 10 g of H / 1g/mol = 10 moles

You might be interested in
Suppose, in an experiment to determine the amount of sodium hypochlorite in bleach, you titrated a 26.34 mL sample of 0.0100 M K
Dmitry [639]

Answer:

0.1 M

Explanation:

The overall balanced reaction equation for the process is;

IO3^- (aq)+ 6H^+(aq) + 6S2O3^2-(aq) → I-(aq) + 3S4O6^2-(aq) + 3H2O(l)

Generally, we must note that;

1 mol of IO3^- require 6 moles of S2O3^2-

Thus;

n (iodate) = n(thiosulfate)/6

C(iodate) x V(iodate) = C(thiosulfate) x V(thiosulfate)/6

Concentration of iodate C(iodate)= 0.0100 M

Volume of iodate= V(iodate)= 26.34 ml

Concentration of thiosulphate= C(thiosulfate)= the unknown

Volume of thiosulphate=V(thiosulfate)= 15.51 ml

Hence;

C(iodate) x V(iodate) × 6/V(thiosulfate) = C(thiosulfate)

0.0100 M × 26.34 ml × 6/15.51 ml = 0.1 M

5 0
2 years ago
Albus Dumbledore provides his students with a sample of 19.3 g of sodium sulfate. How many oxygen atoms are in this sample
Dimas [21]

Answer:

<em>3.27·10²³ atoms of O</em>

Explanation:

To figure out the amount of oxygen atoms in this sample, we must first evaluate the sample.

The chemical formula for sodium sulfate is <em>Na₂SO₄, </em>and its molar mass is approximately 142.05\frac{g}{mol}.

We will use stoichiometry to convert from our mass of <em>Na₂SO₄ </em>to moles of <em>Na₂SO₄</em>, and then from moles of <em>Na₂SO₄ </em>to moles of <em>O </em>using the mole ratio; then finally, we will convert from moles of <em>O </em>to atoms of <em>O </em>using Avogadro's constant.

19.3g <em>Na₂SO₄</em> · \frac{1 mol Na^2SO^4}{142.05g Na^2SO^4} · \frac{4 mol O}{1 mol Na^2SO^4} ·\frac{6.022x10^2^3}{1 mol O}

After doing the math for this dimensional analysis, you should get a quantity of approximately <em>3.27·10²³ atoms of O</em>.

3 0
2 years ago
Consider the following reaction (X = Cl or Br) which statement s is are correct?
statuscvo [17]

A.S OLOS kkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkll

5 0
2 years ago
Olympic cyclist fill their tires with helium to make them lighter. Calculate the mass of air in an air filled tire and the mass
inn [45]

<u>Answer:</u> The mass difference between the two is 7.38 grams.

<u>Explanation:</u>

To calculate the number of moles, we use the equation given by ideal gas follows:

PV=nRT

where,

P = pressure = 125 psi = 8.50 atm    (Conversion factor:  1 atm = 14.7 psi)

V = Volume = 855 mL = 0.855 L    (Conversion factor:  1 L = 1000 mL)

T = Temperature = 25^oC=[25+273]K=298K

R = Gas constant = 0.0821\text{ L. atm }mol^{-1}K^{-1}

n = number of moles = ?

Putting values in above equation, we get:

8.50atm\times 0.855L=n\times 0.0821\text{ L atm }mol^{-1}K^{-1}\times 298K\\\\n=\frac{8.50\times 0.855}{0.0821\times 298}=0.297mol

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}      .....(1)

  • <u>For air:</u>

Moles of air = 0.297 moles

Average molar mass of air = 28.8 g/mol

Putting values in equation 1, we get:

0.297mol=\frac{\text{Mass of air}}{28.8g/mol}\\\\\text{Mass of air}=(0.297mol\times 28.8g/mol)=8.56g

Mass of air, m_1 = 8.56 g

  • <u>For helium gas:</u>

Moles of helium = 0.297 moles

Molar mass of helium = 4 g/mol

Putting values in equation 1, we get:

0.297mol=\frac{\text{Mass of helium}}{4g/mol}\\\\\text{Mass of helium}=(0.297mol\times 4g/mol)=1.18g

Mass of helium, m_2 = 1.18 g

Calculating the mass difference between the two:

\Delta m=m_1-m_2

\Delta m=(8.56-1.18)g=7.38g

Hence, the mass difference between the two is 7.38 grams.

5 0
2 years ago
A gas cylinder filled with nitrogen at standard temperature and pressure has a mass of 37.289 g. The same container filled with
andrew-mc [135]

Answer:

Molar mass = 3.9236 g/mol ≅ 4 g/mol

This corresponds to Helium gas.

Explanation:

Let the moles of nitrogen gas = x moles

Moles of carbon dioxide = x moles ( As both are filled at same temperature and pressure conditions )

Given:

Mass_{Container}+Mass_{Nitrogen\ gas}=37.289\ g

Molar mass of nitrogen gas, N_2 = 28.014 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

x\ moles= \frac{Mass}{28.014\ g/mol}

Mass of nitrogen gas = 28.014x g

So,

Let, Mass_{Container}=y

y+28.014x=37.289

Similarly,

Mass_{Container}+Mass_{Carbon\ dioxide\ gas}=37.440\ g

Molar mass of nitrogen gas, CO_2 = 44.01 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

x\ moles= \frac{Mass{44.01\ g/mol}

Mass of nitrogen gas = 44.01x g

So,

y+44.01x=37.440

Solving the two equations, we get :

Mass_{Container}=y=37.025\ g

x = 0.00943 moles

Thus, Given:

Mass_{Container}+Mass_{Unknown\ gas}=37.062\ g

37.025\ g+Mass_{Unknown\ gas}=37.062\ g

Mass of the gas = 0.037 moles

Moles = 0.00943 moles

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

0.00943\ moles= \frac{0.037\ g}Molar mass}

Molar mass = 3.9236 g/mol ≅ 4 g/mol

This corresponds to Helium gas.

7 0
2 years ago
Other questions:
  • What scientific knowledge was necessary for Kroto, Smalley, and Curl to discover buckyballs? Check all that apply. All matter is
    7·2 answers
  • How many grams of KBr are required to make 550. mL of a 0.115 M KBr solution?
    12·1 answer
  • A student does not observe a change when holding a test tube in a flame. However, a change is expected. What is the most likely
    15·2 answers
  • You are asked to go into the lab and prepare an acetic acid - sodium acetate buffer solution with a ph of 4.00  0.02. what mola
    12·1 answer
  • Classify the compound below as an alkane, alkene, alkyne, alcohol, aldehyde, amine, and so forth
    13·1 answer
  • A solution is made by dissolving 9.74 g of sodium sulfate in water to a final volume of 165 mL of solution. What is the weight/w
    11·1 answer
  • Select all the true statements. When an atom gains an electron, it becomes a cation. Anions carry a positive charge. The Cl− and
    14·1 answer
  • Fusion and fission reactions are both nuclear reactions that can be used to produce energy. However, while fission reactions are
    15·1 answer
  • It is 762 miles from here to Chicago. An obese physics teacher jogs at a rate of 5.0 miles every 20.0 minutes. How long would it
    10·1 answer
  • The mass of radium-226 in a sample is found to have decreased from 45.00g to 5.625g in a period of 4800 years.From this informat
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!