Answer: The standard enthalpy of formation of liquid octane is -250.2 kJ/mol
Explanation:
The given balanced chemical reaction is,

First we have to calculate the enthalpy of reaction
.

![\Delta H^o=[n_{O_2}\times \Delta H_f^0_{(O_2)}+n_{H_2O}\times \Delta H_f^0_{(H_2O)}]-[n_{C_8H_{18}}\times \Delta H_f^0_{(C_8H_{18})+n_{O_2}\times \Delta H_f^0_{(O_2)}]](https://tex.z-dn.net/?f=%5CDelta%20H%5Eo%3D%5Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28O_2%29%7D%2Bn_%7BH_2O%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28H_2O%29%7D%5D-%5Bn_%7BC_8H_%7B18%7D%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28C_8H_%7B18%7D%29%2Bn_%7BO_2%7D%5Ctimes%20%5CDelta%20H_f%5E0_%7B%28O_2%29%7D%5D)
where,
We are given:

Putting values in above equation, we get:
![-1.0940\times 10^4=[(16\times -393.5)+(18\times -285.8)]-[(25\times 0)+(2\times \Delat H_f{C_8H_{18}(l)}]](https://tex.z-dn.net/?f=-1.0940%5Ctimes%2010%5E4%3D%5B%2816%5Ctimes%20-393.5%29%2B%2818%5Ctimes%20-285.8%29%5D-%5B%2825%5Ctimes%200%29%2B%282%5Ctimes%20%5CDelat%20H_f%7BC_8H_%7B18%7D%28l%29%7D%5D)

Thus the standard enthalpy of formation of liquid octane is -250.2 kJ/mol
Answer:
volume in L = 0.25 L
Explanation:
Given data:
Mass of Cu(NO₃)₂ = 2.43 g
Volume of KI = ?
Solution:
Balanced chemical equation:
2Cu(NO₃)₂ + 4KI → 2CuI + I₂ + 4KNO₃
Moles of Cu(NO₃)₂:
Number of moles = mass/ molar mass
Number of moles = 2.43 g/ 187.56 g/mol
Number of moles = 0.013 mol
Now we will compare the moles of Cu(NO₃)₂ with KI.
Cu(NO₃)₂ : KI
2 : 4
0.013 : 4 × 0.013=0.052 mol
Volume of KI:
<em>Molarity = moles of solute / volume in L</em>
volume in L = moles of solute /Molarity
volume in L = 0.052 mol / 0.209 mol/L
volume in L = 0.25 L
Each nitrogen molecule had 2 Nitrogen atoms.
So 2 moles of nitrogen gas molecules will have 4 moles of nitrogen atoms.Answer is 2moles
Reactant C is the limiting reactant in this scenario.
Explanation:
The reactant in the balanced chemical reaction which gives the smaller amount or moles of product is the limiting reagent.
Balanced chemical reaction is:
A + 2B + 3C → 2D + E
number of moles
A = 0.50 mole
B = 0.60 moles
C = 0.90 moles
Taking A as the reactant
1 mole of A reacted to form 2 moles of D
0.50 moles of A will produce
= 
thus 0.50 moles of A will produce 1 mole of D
Taking B as the reactant
2 moles of B reacted to form 2 moles of D
0.60 moles of B reacted to form x moles of D
= 
x = 2 moles of D is produced.
Taking C as the reactant:
3 moles of C reacted to form 2 moles of D
O.9 moles of C reacted to form x moles of D
= 
= 0.60 moles of D is formed.
Thus C is the limiting reagent in the given reaction as it produces smallest mass of product.
<u>Answer: </u>The correct answer is Option A.
<u>Explanation:</u>
Fluorine is the 9th element in the periodic table which belongs to group 17 and period 2. It is a non-metal because it requires an electron to gain its stable electronic configuration.
The electronic configuration of this elements is: 
This element requires 1 electron to attain stable configuration. It is an insulator and is not lustrous.
This element easily gains an electron and hence, is considered as a highly reactive non-metal.
Hence, the correct answer is Option A.