Answer:
The element is Na
Explanation:
Ionization energy is the energy needed to release the last electron from an atom in its ground state to the gaseous state. It is a periodic property that increases as we go through the periods of the periodic table, but decreases if we move in groups. Sodium has thr ionic radius (another periodic property) that is too large, making it easier to release the electron away, since it is too far from the nucleus.
The pressure needed to change the volume to 24 L is 0.796 atm.
Explanation:
It is known by Boyle's law that the pressure experienced by the gas molecules will be inversely proportional to the volume occupied by the molecules.

So as the initial volume is said to be 22.4 L, consider it as V₁ = 22.4 L. Then the initial pressure is said to be 0.853 atm, so P₁ = 0.853 atm. So we have to determine the new pressure P₂ when the volume is changed to V₂ = 24 L. As there is increase in the volume, the pressure should be decreased due to Boyle's law. Thus, as per Boyle's law, the two pressures and their volumes can be related as


Thus, the pressure gets decreased to 0.796 atm on increase in the volume to 24 L.
So the pressure needed to change the volume to 24 L is 0.796 atm.
Answer:
Molarity = 1.93 mol.L⁻¹
Explanation:
Molarity is the unit of concentration used to specify the amount of solute in given amount of solution. It is expressed as,
Molarity = Moles / Volume of Solution ----- (1)
Data Given;
Mass = 11.3 g
Volume = 100 mL = 0.10 L
First calculate Moles for given mass as,
Moles = Mass / M.mass
Moles = 11.3 g / 58.44 g.mol⁻¹
Moles = 0.1933 mol
Now, putting value of Moles and Volume in eq. 1,
Molarity = 0.1933 mol ÷ 0.10 L
Molarity = 1.93 mol.L⁻¹
The question is incomplete , complete question is:
Hydrogen, a potential future fuel, can be produced from carbon (from coal) and steam by the following reaction:

Note that the average bond energy for the breaking of a bond in CO2 is 799 kJ/mol. Use average bond energies to calculate ΔH of reaction for this reaction.
Answer:
The ΔH of the reaction is -626 kJ/mol.
Explanation:

We are given with:



ΔH = (Energies required to break bonds on reactant side) - (Energies released on formation of bonds on product side)



The ΔH of the reaction is -626 kJ/mol.
Answer is: D) Be, Mg, Sr.
Beryllium, magnesium and strontium are alkaline earth metals (group 2 of Periodic table of elements).
The elements have very similar properties.
Alkaline earth metals have in common an outer s- electron shell (two electrons). For example, magnesium atom.
Atomic number of magnesium (Mg) is 12, it means that it has 12 protons and 12 electrons.
Electron configuration of magnesium atom: ₁₂Mg 1s² 2s² 2p⁶ 3s².