Answer:
Equilibrium constant for
is 0.5
Equilibrium constant for decomposition of
is 
Explanation:
dissociates as follows:

initial 0.72 mol 0 0
at eq. 0.72 - 0.40 0.40 0.40
Expression for the equilibrium constant is as follows:
![k=\frac{[PCl_3][Cl_2]}{[PCl_5]}](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B%5BPCl_3%5D%5BCl_2%5D%7D%7B%5BPCl_5%5D%7D)
Substitute the values in the above formula to calculate equilibrium constant as follows:
![k=\frac{[0.40/1][0.40/1]}{0.32/1} \\=\frac{0.40 \times 0.40}{0.32} \\=0.5](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B%5B0.40%2F1%5D%5B0.40%2F1%5D%7D%7B0.32%2F1%7D%20%5C%5C%3D%5Cfrac%7B0.40%20%5Ctimes%200.40%7D%7B0.32%7D%20%5C%5C%3D0.5)
Therefore, equilibrium constant for
is 0.5
Now calculate the equilibrium constant for decomposition of 
It is given that
is decomposed.
decomposes as follows:

initial 1.0 M 0 0
at eq. concentration of
is:
![[NO_2]_{eq}=1-(0.000066) = 0.999934\ M](https://tex.z-dn.net/?f=%5BNO_2%5D_%7Beq%7D%3D1-%280.000066%29%20%3D%200.999934%5C%20M)
![[NO]_{eq}=6.6 \times 10^{-5}\ M](https://tex.z-dn.net/?f=%5BNO%5D_%7Beq%7D%3D6.6%20%5Ctimes%2010%5E%7B-5%7D%5C%20M)
Expression for equilibrium constant is as follows:
![K=\frac{[NO]^2[O_2]}{[NO_2]^2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BNO%5D%5E2%5BO_2%5D%7D%7B%5BNO_2%5D%5E2%7D)
Substitute the values in the above expression
![K=\frac{[6.6\times 10^{-5}]^2[3.3 \times 10^{-5}]}{[0.999934]^2} \\=1.79\times 10^{-14}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5B6.6%5Ctimes%2010%5E%7B-5%7D%5D%5E2%5B3.3%20%5Ctimes%2010%5E%7B-5%7D%5D%7D%7B%5B0.999934%5D%5E2%7D%20%5C%5C%3D1.79%5Ctimes%2010%5E%7B-14%7D)
Equilibrium constant for decomposition of
is 
Hi!
The radical bromination reaction of C₆H₅CH₂CH₃ is performed through a mechanism in which radical reactions are involved. This compound is an alkylbenzene compound, and the carbon that is more reactive towards radical bromination is the carbon bonded to the aromatic ring because in the reaction mechanism the intermediaries are stabilized by resonance in the aromatic ring.
A terminal substitution will not occur because substitution there will not be stabilized by resonance. The compound that will be formed in this reaction would be:
C₆H₅CH₂CH₃ + Br₂ → C₆H₅CH₂(Br)CH₃ + HBr
Reaction is producing more reactants than products
Answer:
It sounds like they are studying French phonemes
Explanations:
I just learned this.
Answer:
Explanation:
Since water has a chemical formula of H2O , there will be 2 moles of hydrogen in every mole of water. In one mole of water, there will exist approximately 6.02⋅1023 water molecules.