The value of X is 10 hence the formula of unknown hydrate sodium sulfate is NaSO4.10 H20
calculation
step 1:find the moles of NaSO4 and the moles of H2O
moles= mass/molar mass
moles of Na2SO4=1.42÷142=0.01 moles
moles of H20= mass of H2O/molar mass of H2O
mass of H2O= 3.22-1.42=1.8g
mole of H2O is therefore 1.8÷18=0.1 moles
step 2: find the mole ratio by dividing each mole by smallest number of mole (0.01)
that is Na2So4= 0.01/0.01 =1
H2O= 0.1/0.01=10
Well, first we must remember that

This is because


So then

Let's assume that the gas has ideal gas behavior.
Then we can use ideal gas equation,
PV = nRT
Where, <span>
P = Pressure of the gas (Pa)
V = volume of the gas (m³)
n = number of moles (mol)
R = Universal gas constant (8.314 J mol</span>⁻¹ K⁻¹)<span>
T = temperature in Kelvin (K)
<span>
The given data for the </span></span>gas is,<span>
P = 2.8 atm = 283710 Pa
V = 98 L = 98 x 10</span>⁻³ m³<span>
T = 292 K
R = 8.314 J mol</span>⁻¹ K⁻¹<span>
n = ?
By applying the formula,
283710 Pa x </span>98 x 10⁻³ m³ = n x 8.314 J mol⁻¹ K⁻¹ x 292 K
<span> n = 11.45 mol
Hence, moles of gas is </span>11.45 mol.
Answer: intermolecular forces are described as forces that either cause attraction or repulsion between neighbouring particles or molecules
Explanation: liquids with strong intermolecular forces has the following properties:
1.) High boiling point
2.) high surface tension
3.) Low viscosity
4.) Low vapour pressure
While liquids with weak intermolecular forces has the following properties:
1.) Low boiling point
2.)low surface tension
3.) High viscosity
4.) High vapour pressure.
The answer is isotonic solution. These are solutions where
the solute concentration in the solution and inside the cells are levelled and consequently
water flows consistently. When red blood cells are positioned in an isotonic
solution the cells would always stay the same.