answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
uysha [10]
2 years ago
10

During the lab, you will have access to a range of acids and bases as well as universal pH indicator paper. Think about how you

can use these tools to develop a color chart for the red cabbage indicator. Then, write a hypothesis using the “if/then” format.
Hypothesis:
Chemistry
2 answers:
kobusy [5.1K]2 years ago
6 0

Answer:

Explanation:bxbxbd

Delicious77 [7]2 years ago
6 0

Answer:

Sample Response (Do not copy and paste this is to learn it from the hypothesis, if you copy and paste 1 you wont learn it and 2 you will get marked for plagerism)

Explanation:

If you can measure the pH of a range of acids and bases using a universal pH indicator, then you can use those values to calibrate a cabbage pH indicator.

You might be interested in
50 kg of N2 gas and 10kg of H2 gas are mixed to produce NH3 gas calculate the NH3gas formed. Identify the limiting reagent in th
statuscvo [17]

Answer:

1. H2 is the limiting reactant.

2. 56666.67g ( i.e 56.67kg) of NH3 is produced.

Explanation:

Step 1:

The equation for the reaction. This is given below:

N2 + H2 —> NH3

Step 2:

Balancing the equation.

N2 + H2 —> NH3

The above equation can be balanced as follow :

There are 2 atoms of N on the left side and 1 atom on the right side. It can be balance by putting 2 in front of NH3 as shown below:

N2 + H2 —> 2NH3

There are 6 atoms of H on the right side and 2 atoms on the left side. It can be balance by putting 3 in front of H2 as shown below

N2 + 3H2 —> 2NH3

Now the equation is balanced.

Step 3:

Determination of the masses of N2 and H2 that reacted and the mass of NH3 produced from the balanced equation. This is illustrated below:

N2 + 3H2 —> 2NH3

Molar Mass of N2 = 2x14 = 28g/mol

Molar Mass of H2 = 2x1 = 2g/mol

Mass of H2 from the balanced equation = 3 x 2 = 6g

Molar Mass of NH3 = 14 + (3x1) = 14 + 3 = 17g/mol

Mass of NH3 from the balanced equation = 2 x 17 = 34g

From the balanced equation above,

28g of N2 reacted with 6g of H2 to produce 34g of NH3

Step 4:

Determination of the limiting reactant. This is illustrated below:

N2 + 3H2 —> 2NH3

Let us consider using all the 10kg (i.e 10000g) of H2 to see if there will be any left of for N2.

From the balanced equation above,

28g of N2 reacted with 6g of H2.

Therefore, Xg of N2 will react with 10000g of H2 i.e

Xg of N2 = (28 x 10000)/6

Xg of N2 = 46666.67g

We can see from the calculations above that there are leftover for N2 as only 46666.67g reacted out of 50kg ( i.e 50000g) that was given. Therefore, H2 is the limiting reactant.

Step 5:

Determination of the mass of NH3 produced during the reaction. This is illustrated below:

N2 + 3H2 —> 2NH3

From the balanced equation above,

6g of H2 reacted to produce 34g of NH3.

Therefore, 10000g of H2 will react to produce = ( 10000 x 34)/6 = 6g of 56666.67g of NH3.

Therefore, 56666.67g ( i.e 56.67kg) of NH3 is produced.

3 0
2 years ago
Read 2 more answers
A solution is prepared by adding 6.24 g of benzene (C 6H 6, 78.11 g/mol) to 80.74 g of cyclohexane (C 6H 12, 84.16 g/mol). Calcu
tekilochka [14]

Answer:

x_B=0.0769

m=0.990m

Explanation:

Hello,

In this case, we can compute the mole fraction of benzene by using the following formula:

x_B=\frac{n_B}{n_B+n_C}

Whereas n accounts for the moles of each substance, thus, we compute them by using molar mass of benzene and cyclohexane:

n_B=6.24g*\frac{1mol}{78.11g}=0.0799mol\\ \\n_C=80.74g*\frac{1mol}{84.16g} =0.959mol

Thus, we compute the mole fraction:

x_B=\frac{0.0799mol}{0.0799mol+0.959mol}\\ \\x_B=0.0769

Next, for the molality, we define it as:

m=\frac{n_B}{m_C}

Whereas we also use the moles of benzene but rather than the moles of cyclohexane, its mass in kilograms (0.08074 kg), thus, we obtain:

m=\frac{0.0799mol}{0.08074kg}=0.990mol/kg

Or just 0.990 m in molal units (mol/kg).

Best regards.

7 0
2 years ago
Which equation shows the proper setup to find the volume of a 0.250 M CaCl2 solution that contains 39.5 g of CaCl2?
Jlenok [28]
Molarity = number of mole of substance(n) / volume of solution (V).

n(CaCl2) = mass (CaCl2)/M(CaCl2)

M(CaCl2) = 40+2*35.5 = 111 g/mol 

n(CaCl2) =39.5 g CaCl2*1 mol/111g

0.250 M = 39.5 g CaCl2*1 mol/111g*volume of solution (V).

volume of solution (V) = 39.5 g CaCl2*1 mol/(0.250 M*111g) = 1.42 L
4 0
2 years ago
Read 2 more answers
The chemical formula for cesium oxide is Cs2O. What is the charge of cesium? +1 +2 –1 –2
aalyn [17]
The Charge Of Cesium Is +1
5 0
2 years ago
Read 2 more answers
At 10°c one volume of water dissolves 3.10 volumes of chlorine gas at 1.00 atm pressure. what is the henry's law constant of cl2
s344n2d4d5 [400]
Answer is:  0,133 mol/ l· atm.
T(chlorine) = 10°C = 283K.
p(chlorine) = 1 atm.
V(chlorine) = 3,10 l.
R - gas constant, R = 0.0821 atm·l/mol·K. 
Ideal gas law: p·V = n·R·T
n(chlorine) = p·V ÷ R·T.
n(chlorine) = 1atm · 3,10l ÷ 0,0821 atm·l/mol·K · 283K = 0,133mol.
Henry's law: c = p·k.
k - <span>Henry's law constant.
</span>c - solubility of a gas at a fixed temperature in a particular solvent.
c = 0,133 mol/l.
k = 0,133 mol/l ÷ 1 atm = 0,133 mol/ l· atm.

4 0
2 years ago
Other questions:
  • A ten mile area of trees is removed from the tropical rainforest. How will this affect the amount of water and the amount of oxy
    9·1 answer
  • Sara tells Michael she is 160 centimeters tall, while Michael says he is 60 inches tall. If there are 2.54 centimeters in an inc
    8·1 answer
  • A molecular biologist measures the mass of Cofactor A in an average yeast cell. The mass is 77.91pg. What is the total mass in m
    15·1 answer
  • What percentage of solar radiation striking a plant is converted into chemical energy?
    8·1 answer
  • A chemical bond between two atoms results from a simultaneous
    7·2 answers
  • How many moles of MgCl2 are there in 319 g of the compound?
    5·1 answer
  • 2.5 moles of sodium chloride is dissolved<br> to make 0.050 liters of solution.
    15·1 answer
  • Iodine has a lower atomic weight than tellurium (126.90 for I, 127.60 for Te) even though it has a higher atomic number (53 for
    6·2 answers
  • what would the total pressure of a mixture of fluorine, chlorine, and bromine gases be if the partial pressure are 2.20 atm, 6.7
    11·1 answer
  • A beaker holds 962 g of a brine solution that is 6.20 percent salt. If 123g of water are evaporated from the beaker, how much sa
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!