Answer:
The Michaelis‑Menten equation is given as
v₀ = Kcat X [E₀] X [S] / (Km + [S])
where,
Kcat is the experimental rate constant of the reaction; [s] is the substrate concentration and
Km is the Michaelis‑Menten constant.
Explanation:
See attached image for a detailed explanation
Answer:
Salts and acids are examples of inorganic compounds called <u><em>electrolytes</em></u>.
Explanation:
Electrolytes are the substances which dissociates into ions when dissolved in water and due to this they are able to conduct electric current through them. These compounds in solid form does not conduct electricity due to the absence of free ions.
For example: Sodium chloride , sulfuric acid etc.


Answer:
34.2 g is the mass of carbon dioxide gas one have in the container.
Explanation:
Moles of
:-
Mass = 49.8 g
Molar mass of oxygen gas = 32 g/mol
The formula for the calculation of moles is shown below:
Thus,

Since pressure and volume are constant, we can use the Avogadro's law as:-
Given ,
V₂ is twice the volume of V₁
V₂ = 2V₁
n₁ = ?
n₂ = 1.55625 mol
Using above equation as:
n₁ = 0.778125 moles
Moles of carbon dioxide = 0.778125 moles
Molar mass of
= 44.0 g/mol
Mass of
= Moles × Molar mass = 0.778125 × 44.0 g = 34.2 g
<u>34.2 g is the mass of carbon dioxide gas one have in the container.</u>
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C