Answer:
Have the same number of electrons in their outer energy levels
Explanation:
Elements in the same group have similar chemical properties because they have the same number of valence electron(s) in their outermost shell.
Chlorine and Iodine have similar chemical properties because they have the same number of valence electron in their outermost shell. This can be seen from their electronic configuration as shown below:
Cl (17) => 1s² 2s²2p⁶ 3s²3p⁵
I (53) => [Kr] 4d¹⁰ 5s²5p⁵
From the above illustration:
Outer shell of Cl (3s²3p⁵) = 2 + 5 = 7 electrons
Outer shell of I (5s²5p⁵) = 2 + 5 = 7 electrons
Since they have the same number of valence electrons, therefore, they will have similar chemical properties.
Answer:
Mass = 84.82 g
Explanation:
Given data:
Number of molecules of CaSO₄ = 3.75× 10²³
Mass in gram = ?
Solution:
Avogadro number:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance.
The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ molecules
3.75× 10²³ molecule × 1 mol / 6.022 × 10²³ molecules
0.623 mol
Mass in gram:
Mass = number of moles × molar mass
Mass = 0.623 mol × 136.14 g/mol
Mass = 84.82 g
Given:
7.20 g sample of Al2(SO4)3
Required:
Mass of oxygen
Solution:
Since you are not given a
chemical reaction, just base your solution to the chemical formula given.
Molar mass of Al2(SO4)3 = 342.15 g/mol
7.20 g Al2(SO4)3 (1 mol/342.15g)(3mol O/2 mol Al)(1 mol O2/1/2 mol
O2)(32g O2/1mol O2) = 4.04 g O2
Answer:
Use a ratio of 0.44 mol lactate to 1 mol of lactic acid
Explanation:
John could prepare a lactate buffer.
He can use the Henderson-Hasselbalch equation to find the acid/base ratio for the buffer.
![\text{pH} = \text{pK}_{\text{a}} + \log\dfrac{\text{[A$^{-}$]}}{\text{[HA]}}\\\\3.5 = 3.86 + \log\dfrac{\text{[A$^{-}$]}}{\text{[HA]}}\\\\\log\dfrac{\text{[A$^{-}$]}}{\text{[HA]}} = 3.5 - 3.86 = -0.36\\\\\dfrac{\text{[A$^{-}$]}}{\text{[HA]}} = 10^{-0.36} = \mathbf{0.44}](https://tex.z-dn.net/?f=%5Ctext%7BpH%7D%20%3D%20%5Ctext%7BpK%7D_%7B%5Ctext%7Ba%7D%7D%20%2B%20%5Clog%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%5C%5C%5C%5C3.5%20%3D%203.86%20%2B%20%5Clog%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%5C%5C%5C%5C%5Clog%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%20%3D%203.5%20-%203.86%20%3D%20-0.36%5C%5C%5C%5C%5Cdfrac%7B%5Ctext%7B%5BA%24%5E%7B-%7D%24%5D%7D%7D%7B%5Ctext%7B%5BHA%5D%7D%7D%20%3D%2010%5E%7B-0.36%7D%20%3D%20%5Cmathbf%7B0.44%7D)
He should use a ratio of 0.44 mol lactate to 1 mol of lactic acid.
For example, he could mix equal volumes of 0.044 mol·L⁻¹ lactate and 0.1 mol·L⁻¹ lactic acid.