Answer:
Solution of isopropanol is 10.25 molal
Explanation:
615 g of isopropanol (C3H7OH) per liter
We gave the information that 615 g of solute (isopropanol) are contained in 1L of water. We need to find out the mass of solvent, so we use density.
Density of water 1g/mL → Density = Mass of water / 1000 mL of water
Notice we converted the L to mL
Mass of water = 1000 g (which is the same to say 1kg)
Molality are the moles of solute in 1kg of solvent, so let's convert the moles of isopropanol → 615 g . 1mol / 60g = 10.25 moles
Molality (mol/kg) = 10.25 moles / 1kg = 10.25 m
Answer: 85.7 mL
Explanation:
Given the information from the question as plotted in the graph i will be uploading along side this answer,
Average of total volume of DCPIP used is
= (1.21 + 1.11 + 1.06)mL / 3
= 1.12 mL
and corresponding ( ascorbic acid ) is 0.70 g/L
Two parameter given as volume of DCPIP in final syringe and total volume of DCPIP are quite ambiguous
700mg ⇒ 1 L
THEREFORE volume that contains 60mg = (1000/700) × 60 = 85.7 mL
solution:
Hydration is the addition of water; hydrogenation is the addition of hydrogen.
desire rxn: _C4H6(g) + 2 H2(g)-----> C4H10(g)___dHhy = ??
knowns:
__________C4H6 + 11/2 O2 --------> 4CO2 + 3H2O______dHox = -2540.2 kJ/mole
__________4CO2 + 5H2O -----------> C4H10 + 13/2 O2___-dHox = 2877.6 kJ/mole
___________2(1/2 O2 + H2 -------------> H2O)___________2*dHox = 2(-285.8 kJ/mole)
Basic mathematics is a prerequisite to chemistry – I just try to help you with the methodology of solving the problem
Answer: Option (6) is the correct answer.
Explanation:
Lattice energy is described as the energy released when formation of 1 mole of an ionic compound occurs due to the combination of its constituent ions.
Also, lattice energy is inversely proportional to the distance between the cation and anion. And, when we move down a group then there occurs an increase in the atomic radii of the atoms.
This means that smaller is the ionic distance between the cation and anion, more will be the lattice energy between the atoms.
Therefore, order from weakest to strongest lattice energy (most positive to most negative) for the given compounds is as follows.
barium chloride < strontium chloride < calcium chloride < magnesium chloride