Answer:
3-methylthiophene > thiophene > benzene > 2-methylfuran
Explanation:
Primarily, five membered heterocyclic aromatic rings undergo nitration at carbon-2. This is because, nitration at carbon-2 leads to the formation of three resonance structures while attack at carbon-3 yields only two resonance structures, hence it is less stabilized.
The presence of a methyl group which donates electrons promotes the stabilization of the cation formed in the nitration of 3-methylthiophene.
2-methylfuran is the least reactive towards nitration because the 2-position has been blocked by a methyl group.
Answer:
The mass of Mg consumed is 21.42g
Explanation:
The reaction is

As per balanced equation, three moles of Mg will react with one mole of nitrogen to give one mole of magnesium nitride.
as given that mass of nitrogen reacted = 8.33g
So moles of nitrogen reacted = 
moles of Mg required = 3 X moles of nitrogen taken = 3X0.2975 = 0.8925mol
Mass of Mg required = moles X molar mass = 0.8925 X 24 = 21.42 g
Answer:
volume in L = 0.25 L
Explanation:
Given data:
Mass of Cu(NO₃)₂ = 2.43 g
Volume of KI = ?
Solution:
Balanced chemical equation:
2Cu(NO₃)₂ + 4KI → 2CuI + I₂ + 4KNO₃
Moles of Cu(NO₃)₂:
Number of moles = mass/ molar mass
Number of moles = 2.43 g/ 187.56 g/mol
Number of moles = 0.013 mol
Now we will compare the moles of Cu(NO₃)₂ with KI.
Cu(NO₃)₂ : KI
2 : 4
0.013 : 4 × 0.013=0.052 mol
Volume of KI:
<em>Molarity = moles of solute / volume in L</em>
volume in L = moles of solute /Molarity
volume in L = 0.052 mol / 0.209 mol/L
volume in L = 0.25 L
Answer:
ions are surrounded by hydrogen ends with positive partial charge. In this way the salt is dissolved in water. Sugar is a molecular compound formed by covalent bonds. In a polar covalent bond, electrons are shared unevenly
Explanation:
Answer:
6.72M of HNO3
Explanation:
In the problem you are diluting the original HNO3 solution by the addition of some water. The final volume is:
290.7mL + 350.0mL = 640.7mL
And you are diluting the solution:
640.7mL / 350.0mL = 1.8306 times
As the original concentration was 12.3M, the final concentration will be:
12.3M / 1.8306 =
<h3>6.72M of HNO3</h3>