We can solve this without a concrete formula through dimensional analysis. This works by manipulating the units such that you end up with the unit of the final answer. Manipulate them by cancelling units that appear both in the numerator and denominator side. As a result, we must be left with the units of g. The current in A or amperes is equivalent to amount of Coulombs per second. Since this involves Coulombs, we will use the Faraday's constant which is 96,500 C/mol electron. The reaction is:
Cr³⁺(aq) + 3e⁻ --> Cr(s)
This means that for every 3 moles of electron transferred, 1 mole of Chromium metal is plated. The molar mass of Cr: 52 g/mol. The solution is as follows:
Mass of Chromium metal = (8 C/s)(60 s/1 min)(160 min)(1 mol e⁻/96,500 C)(1 mol Cr/3 mol e)(52 g/mol)
<em>Mass of Chromium metal = 13.79 g</em>
There is an exact value for the standard volume at standard conditions of 1 atm and 273 K. This standard volume for any ideal gas is 22.4 L/mol. Thus,
Moles SO₂ = 5.9 L * 1 mol/22.4 L = 0.263 mol
The molar mass for SO₂ is 64.066 g/mol. So, the mass is:
Mass = 0.263 mol * 64.066 g/mol = <em>16.87 g SO₂</em>
<span>Empirical formula for C2H4(OH)2 is</span><span>
C1H3O1
</span>
Answer: Cu
Explanation: It is Cu because the origin of the word Copper comes from the latin word "Cuprum".
Answer:
H₃PO₄/H₂PO₄⁻ and HCO₃⁻/CO₃²⁻
Explanation:
An acid is a proton donor; a base is a proton acceptor.
Thus, H₃PO₄ is the acid, because it donates a proton to the carbonate ion.
CO₃²⁻ is the base, because it accepts a proton from the phosphoric acid.
The conjugate base is what's left after the acid has given up its proton.
The conjugate acid is what's formed when the base has accepted a proton.
H₃PO₄/H₂PO₄⁻ make one conjugate acid/base pair, and HCO₃⁻/CO₃²⁻ are the other conjugate acid/base pair.
H₃PO₄ + CO₃²⁻ ⇌ H₂PO₄⁻ + HCO₃⁻
acid base conj. conj.
base acid