Answer:
As
Explanation:
For any element to exhibit the pattern of ionization energy shown in the question, it must possess five electrons in its outermost shell. These five electrons are not lost at once. They are lost progressively until the valence shell becomes empty. The ionization energy increases steadily as more electrons are lost from the valence shell.
The only pentavalent element among the options in arsenic, hence the answer.
Answer:

Explanation:
Hello,
In this case, considering that the safe temperature may be computed via the ideal gas law as we now the pressure, mass and volume via the dimensions:

The pressure in atm is:

And the moles considering the mass and molar mass (66 g/mol) of dinitrogen difluoride (N₂F₂):

In sich a way, by applying the ideal gas equation, which is not the best assumption but could work as an approximation due to the high temperature, the temperature, with three significant figures, will be:

Best regards.
Answer:
1)Carbonated water is saturated with carbon, hence it gives off carbon through bubbles.
2)Adding sugar to water until it no longer dissolves creates a saturated solution.
3)Continuing to dissolve salt in water until it will no longer dissolve creates a saturated solution.
An unsaturated tea and sugar solution would be one into which you could add more sugar and have the sugar still dissolve
Answer:
100.52
Explanation:
from the ideal gas equation PV=nRT
for a given container filled with any ideal gas P and V remains constant.So T is also constant.R is as such a constant.
So n i.e no of moles will also be constant.
no of moles of Ar=3.224/40=0.0806
no of moles of unknown gas=0.0806
molecular wt of unknown gas=8.102/0.0806=100.52
-OH is elctron donating -C=-N is electron withdrawing -O-CO-CH3 is electron withdrawing -N(CH3)2 is electron donating -C(CH3)3 is electron donating -CO-O-CH3 is electron withdrawing -CH(CH3)2 is electron donating -NO2 is electrong withdrawing -CH2