answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alekssandra [29.7K]
2 years ago
11

what would the total pressure of a mixture of fluorine, chlorine, and bromine gases be if the partial pressure are 2.20 atm, 6.7

0 atm, 0.03 atm respectively
Chemistry
1 answer:
astraxan [27]2 years ago
4 0

Answer:

The total pressure would be 8, 93 atm

Explanation:

We apply Dalton's laws, where for a gaseous mixture, the total pressure (Pt) is the sum of the partial pressures (Px) of the gases that make up the mixture.

Pt= Pxa + Pxb+ Pxc....

Pt=2, 20 atm+ 6, 70 atm+ 0,03 atm= 8, 93 atm

You might be interested in
When 5800 joules of energy are applied to a 15.2-kg piece of lead metal, how much does the temperature change by
Firdavs [7]

<span>Heat gained or absorbed in a system can be calculated by multiplying the given mass to the specific heat capacity of the substance and the temperature difference. The heat capacity of aluminum at 25 degrees celsius is 0.9 J/g-C. It is expressed as follows:</span><span>

Heat = mC(T2-T1)
5800 J = 152000(0.90)(</span>ΔT)

ΔT = 0.42 °C change in temperature

8 0
2 years ago
Read 2 more answers
PLEASE ASSIST MEEEEEEE!!!!!!!!! 40 POINTS
lana66690 [7]

Answer:

Wavelength of this beam of light: \rm 4.39\times 10^{-7}\; m.

Explanation:

The speed of light in vacuum is approximately \rm 2.998\times 10^{8}\;m \cdot s^{-1}.

Light behaves like a wave. The wavelength of a wave is equal to the distance that it travels (in the given medium) in each period of oscillation.

On the other hand, the frequency of a wave is the number of periods in unit time. 1\rm \; Hz means one oscillation per second. The frequency of this particular wave is \rm 6.83\times 10^{14}\; Hz. In other words, there are 6.83\times 10^{14} oscillations in each second.

The period of oscillation will be equal to

\displaystyle t = \frac{1}{f} = \frac{1}{\rm 6.83\times 10^{14}\; s^{-1}}.

In that period of time, a beam of light in vacuum would have traveled  

\displaystyle \rm 2.998\times 10^{8}\; m\cdot s^{-1} \times \frac{1}{\rm 6.83\times 10^{14}\; s^{-1}} = 4.39\times 10^{-7}\; m.

In other words, if this beam of light of frequency \rm 6.83\times 10^{14}\; Hz is in vacuum, its wavelength will be equal to \rm 4.39\times 10^{-7}\; m.

8 0
2 years ago
Exactly 1.0 mol N2O4 is placed in an empty 1.0-L container and allowed to reach equilibrium described by the equation N2O4(g) 2N
Amanda [17]

Answer : The correct option is, (a) 0.44

Explanation :

First we have to calculate the concentration of N_2O_4.

\text{Concentration of }N_2O_4=\frac{\text{Moles of }N_2O_4}{\text{Volume of solution}}

\text{Concentration of }N_2O_4=\frac{1.0moles}{1.0L}=1.0M

Now we have to calculate the dissociated concentration of N_2O_4.

The balanced equilibrium reaction is,

                             N_2O_4(g)\rightleftharpoons 2NO_2(aq)

Initial conc.           1.0 M          0

At eqm. conc.     (1.0-x) M    (2x) M

As we are given,

The percent of dissociation of N_2O_4 = \alpha = 28.0 %

So, the dissociate concentration of N_2O_4 = C\alpha=1.0M\times \frac{28.0}{100}=0.28M

The value of x = C\alpha = 0.28 M

Now we have to calculate the concentration of N_2O_4\text{ and }NO_2 at equilibrium.

Concentration of N_2O_4 = 1.0 - x  = 1.0 - 0.28 = 0.72 M

Concentration of NO_2 = 2x = 2 × 0.28 = 0.56 M

Now we have to calculate the equilibrium constant for the reaction.

The expression of equilibrium constant for the reaction will be:

K_c=\frac{[NO_2]^2}{[N_2O_4]}

Now put all the values in this expression, we get :

K_c=\frac{(0.56)^2}{0.72}=0.44

Therefore, the equilibrium constant K_c for the reaction is, 0.44

8 0
2 years ago
Determine the empirical formula for compounds that have the following analyses: a. 66.0% barium and 34.0% chlorine b. 80.38% bis
almond37 [142]

Answer: a) BaCl_2

b)  BiO_3H_3

Explanation:

If percentage are given then we are taking total mass is 100 grams.

So, the mass of each element is equal to the percentage given.

a) Mass of Ba= 66.06 g

Mass of Cl = 34.0 g

Step 1 : convert given masses into moles.

Moles of Ba =\frac{\text{ given mass of ba}}{\text{ molar mass of Ba}}= \frac{66.06g}{137g/mole}=0.48moles

Moles of Cl = \frac{\text{ given mass of Cl}}{\text{ molar mass of Cl}}= \frac{34g}{35.5g/mole}=0.96moles[/tex]

Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.

For Ba = \frac{0.48}{0.48}=1

For O =\frac{0.96}{0.48}=2

The ratio of Ba: Cl= 1:2

Hence the empirical formula is BaCl_2

b) Mass of Bi= 80.38 g

Mass of O= 18.46 g

Mass of H = 1.16 g

Step 1 : convert given masses into moles.

Moles of Bi =\frac{\text{ given mass of ba}}{\text{ molar mass of Ba}}= \frac{80.38g}{209g/mole}=0.38moles

Moles of O= \frac{\text{ given mass of O}}{\text{ molar mass of O}}= \frac{18.46g}{16g/mole}=1.15moles

Moles of H=\frac{\text{ given mass of H}}{\text{ molar mass of H}}= \frac{1.16g}{1g/mole}=1.16moles

Step 2 : For the mole ratio, divide each value of moles by the smallest number of moles calculated.

For Bi= \frac{0.38}{0.38}=1

For O =\frac{1.15}{0.38}=3

For H=\frac{1.16}{0.38}=3

The ratio of Bi: O: H= 1:3: 3

Hence the empirical formula is BiO_3H_3

6 0
2 years ago
The Lewis structure for CO2 has a central The Lewis structure for C O 2 has a central blank atom attached to blank atoms.
kirza4 [7]

Answer:

See the explanation

Explanation:

1) The Lewis structure for  CO_2 has a central Carbon<em> </em>atom attached to Oxygen atoms.

In the CO_2  we will have a structure:  O=C=O the <u>central atom</u> "carbon" we will have <u>2 sigma bonds and 2 pi bonds</u>, therefore, we have an <u>Sp hybridization</u>. For O we have <u>1 pi and 1 sigma bond</u>, therefore, we have an <u>Sp2 hybridization</u>.

2) These atoms are held together by <u>double bonds.</u>

<u></u>

Again in the structure of CO_2: O=C=O we only have double bonds.

3. Carbon dioxide has a Carbon dioxide has a <u>Linear</u> electron geometry.

Due to the double bonds we have to have a linear structure because in this geometry the atoms will be further apart from each other.

4. The carbon atom is <u>Sp</u> hybridized.

We will have for carbon 2 pi bonds, so we will have an <u>Sp</u> hybridization.

5. Carbon dioxide has two Carbon dioxide has two C(p) - O(p) π bonds and two C(sp) - O(Sp2) σ bonds.

(See figures)

Figure 1: Carbon hybridization

Figure 2: Oxygen hybridization

6 0
2 years ago
Other questions:
  • How many grams are in 3.3 moles of potassium sulfide , k2s
    15·1 answer
  • A molecular biologist measures the mass of Cofactor A in an average yeast cell. The mass is 77.91pg. What is the total mass in m
    15·1 answer
  • Methylamine (ch3nh2) is a weakly basic compound. calculate the kb for methylamine if a 0.253 m solution is 4.07% ionized.
    8·1 answer
  • A compound is 2.00% H by mass, 32.7% S by mass, and 65.3% O by mass. What is its empirical formula? The second step is to calcul
    5·2 answers
  • Construct a flow chart to demonstrate how you could separate a mixture of 1,4- dichlorobenzene, 4-chlorobenzoic acid, and 4-chlo
    7·2 answers
  • Three units put together in different patterns essentially make
    12·2 answers
  • In part 2 of the experiment, you will be analyzing a sample of household bleach. A 0.0854 g sample of household bleach is comple
    7·1 answer
  • Which of the following elements will gain electrons to form an
    5·1 answer
  • A piston containing 0.120moles of methane gas, CH4, has a volume of 2.12liters. If methane is added until the volume is increase
    6·1 answer
  • how many grams of calcium oxide will be produced in a closed vessel containing 20.0 kg of calcium and 20.0 kg of oxygen gas if t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!