Answer: 8.12 g NaCl
Explanation: Use Avogadro's number to find the number of m
moles of NaCl:
8.24x10²² molecules NaCl / 1 mole NaCl/ 6.022x10²³ molecules NaCl
= 0.14 mole NaCl
Next convert moles to grams NaCl using its molar mass;
0.14 mole NaCl x 58g NaCl / 1 mole NaCl
= 8.12 g NaCl
A. gravity (of any planet/star/celestial body around )
D. Inertia
E. Centripetal force
What you need to do is find 1/8 of 50
you can just divide 50 by 8 to get 6.25
so now you have to find how many days it will take till there are 6.25 grams of iodine left
every 8.1 days its mass is split in half
so start splitting it in half and every time you do, you add 8.1 days
50/2 =25 8.1
25/2 =12.5 + 8.1
12.5/2= 6.25 +8.1
now you have reached 1/8 of the original amount of Iodine-131
so to find how long it took just add 8.1+8.1+8.1
(this is the same as 8.1x3)
which equals 24.3
it will take 24.3 days for Iodine 131 to decay to 1/8 of its original mass.
(good luck on the regent if thats what your studying for :)
Balance Chemical Equation is as follow,
<span> Cu + 2 AgNO</span>₃ → 2 Ag + Cu(NO₃)₂
According to Balance Equation,
2 Moles of Ag is produced by reacting = 1 Mole of Cu
So,
0.854 Moles of Ag will be produced by reacting = X Moles of Cu
Solving for X,
X = (0.854 mol × 1 mol) ÷ 2 mol
X = 0.427 Moles of Cu
Result:
0.854 Moles of Ag are produced by reacting 0.427 Moles of Cu.
Answer:
Explanation:
This experiment converts mechanical energy to electrical energy. The movement of the magnet in and out of the coil is mechanical energy and the current induced in the circuit as a result of the magnet movement is electrical energy.
It should be noted that generally electromagnetic induction as described by faraday (and indeed the experiment described in the question) involves the transformation of mechanical energy into electrical energy. It's application is used in transformers, electric motors and generators.