Answer:
Percent loss of water = 25%
Explanation:
Given data:
Mass of hydrated salt = 15.6 g
Mass of anhydrous salt = 11.7 g
Percentage of water lost = ?
Solution:
First of all we will calculate the mass of water in hydrated salt.
Mass of water = Mass of hydrated salt - Mass of anhydrous salt
Mass of water = 15.6 g - 11.7 g
Mass of water = 3.9 g
Now we will calculate the percentage.
Percent loss of water = mass of water / total mass × 100
Percent loss of water = 3.9 g/ 15.6 g × 100
Percent loss of water = 25%
To determine the equilibrium concentration of hydronium ions in the solution, we use the given value of the percent ionized. Percent ionized is the percent of the ions that is dissociated into the solution. It is equal to the concentration of an ionized species over the initial concentration of the compound multiplied by 100 percent. For this case, the dissociation of the weak acid has a 1 is to 1 ratio to the ionized species such that the concentration of the CH3COO- and H+ ions at equilibrium would be equal. We calculate as follows:
5.2% = 5.2 M H3O+ / 100 M CH3COOH
5.2 M H3O+ / 100 M CH3COOH = [H3O+] / 0.048 M CH3COOH
[H3O+] = 0.2496 M
Answer:
A.0.20M
Explanation:
c 1 V 1 = c 2 V 2
Initial Volume, V1 = 200 mL
Final Volume, V2 = 200 + 400 = 600 mL
Initial Concentration, c1 = 0.60 M
Final Concentration, c2= ?
Solving for c2;
c2 = c1v1 / v2
c2 = 0.60 * 200 / 600
c2 = 0.20M
Answer:
Conversion of kinetic energy to potential energy (chemo mechanical energy)
In the state of rest, the rubber is a tangled mass of long chained cross-linked polymer that due to their disorderliness are in a state of increased entropy. By pulling on the polymer, the applied kinetic energy stretches the polymer into straight chains, giving them order and reducing their entropy. The stretched rubber then has energy stored in the form of chemo mechanical energy which is a form of potential energy
Conversion of the stored potential energy in the stretched to kinetic energy
By remaining in a stretched condition, the rubber is in a state of high potential energy, when the force holding the rubber in place is removed, due to the laws of thermodynamics, the polymers in the rubber curls back to their state of "random" tangled mass releasing the stored potential energy in the process and doing work such as moving items placed in the rubber's path of motion such as an object that has weight, w then takes up the kinetic energy 1/2×m×v² which can can result in the flight of the object.
Explanation: