Answer is: 48,25 torr.
Raoult's Law: p = x(solv) · p(solv)
p - <span>vapour pressure of a solution.
</span>x(solv) - <span>mole fraction of the solvent.
</span>p(solv) - <span>vapour pressure of the pure solvent.
</span>n(ethanol) = 950g ÷ 46,07g/mol = 20,62 mol.
x(solv) = moles of solvent ÷ total number of moles
x(solv) = 20,62 ÷ 21,77 = 0,965.
p = 0,965 ·50,0 torr = 48,25 torr.
Answer:
Gd → Gd⁺ + 1e⁻, Gd⁺ → Gd⁺² + 1e⁻, Gd⁺² → Gd⁺³ + 1e⁻
Explanation:
The ionization energy is the energy necessary to remove one electron of the atom, transforming it in a cation. The first ionization energy is the energy necessary to remove the first electron, the second energy, to remove the second electron, and then successively.
Thus, for gadolinium (Gd)
Fisrt ionization:
Gd → Gd⁺ + 1e⁻
Second ionization:
Gd⁺ → Gd⁺² + 1e⁻
Third ionization:
Gd⁺² → Gd⁺³ + 1e⁻
Answer:
Mole fraction N₂ = 0.336
Explanation:
Mole fraction of a gas can be determined in order to know the partial pressure of the gas, and the total pressure, in the mixture.
Total pressure in the mixture: Sum of partial pressure from all the gases
Total pressure = 183 mmHg + 443 mmHg + 693 mmHg =1319 mmHg
Mole fraction N₂ = Partial pressure N₂ / Total pressure
443 mmHg / 1319 mmHg = 0.336
Remember that mole fraction does not carry units
The answer: is yes, It is a buffer solution.
first, we need to get moles of sodium hydroxide and propanoic acid:
moles NaOH = molarity * volume
= 0.5M * 0.1 L = 0.05 moles
moles propanoic acid = molarity * volume
= 0.75 M * 0.1 L = 0.075 moles
[NaOH] at equilibrium = 0.05 m
[propanoic acid ] at equilibrium = 0.075 - 0.05 = 0.025 m
when Pka for propanoic acid (given) = 4.89
so by substitution:
∴PH = Pka + ㏒[NaOH]/[propanoic acid ]
∴ PH = 4.89 + ㏒ 0.05 / 0.025
= 5.19