Answer:
Due to random assortment and incomplete dominance of alleles.
Explanation:
The bunnies end up with ear thicknesses that are different from one another due to random assortment of alleles during gamete formation according to Mendel.
In addition to random assortment, the allele for thick ear also displayed what is known as incomplete dominance over the allele for thin ear to arrive at an average ear thickness.
B is correct. As you move down group 1, the elements become more reactive with other elements because the electrons have a weaker attraction to their own atoms nucleus which means attraction with other elements is much stronger, making the atom more reactive.
Answer : The enthalpy change for the reaction is, 201.9 kJ
Explanation :
According to Hess’s law of constant heat summation, the heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.
According to this law, the chemical equation can be treated as ordinary algebraic expression and can be added or subtracted to yield the required equation. That means the enthalpy change of the overall reaction is the sum of the enthalpy changes of the intermediate reactions.
The balanced reaction of
will be,

The intermediate balanced chemical reaction will be,
(1)

(2)

(3)

(4)

Now we will multiply the reaction 1 by 2, revere the reaction 2, reverse and half the reaction 3 and 4 then adding all the equations, we get :
(1)

(2)

(3)

(4)

The expression for enthalpy of the reaction will be,



Therefore, the enthalpy change for the reaction is, 201.9 kJ
Answer D. Follow Le Chatelier's principle.
Answer:
The correct option is D.
Explanation:
Radioactive substances usually emit different types of particles when they are decaying. Such particles include alpha particles, beta particles and gamma ray. When an alpha particle is emitted from an unstable radioactive nucleus such nucleus usually lost an atomic mass that correspond to that of helium atom. Note that an alpha particle is made up of two protons and two neutrons, which result in mass number of 4. Thus, a nucleus that emit an alpha particle will have its mass number (atomic mass) reduce by 4 and atomic number that is reduced by 2.