Let's look at the molar weight of the answers:
NO is 30 g/mol
NO2 is 46
N2O is 44
N2O4 is 124
<span>We have the grams of the product, so we need the moles in order to calculate the molar weight. We us PV=nRT for this, assuming standard temperature and pressure. </span>
You were given the liters (.120L)
Std pressure is 1 atmosphere
You're looking for n, the number of moles
<span>Temp is 293.15 kelvin, thats standard </span>
And r is the gas constant in liters-atm per mol kelvin
(.120 liters)(1atm)=n(293.15K)(.08206)
Solving for n is .0049883835 mol
<span>.23g divided by .0049883 mol is about 46g/mol. You're answer is B I think, NO2
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Mixing of pure orbitals having nearly equal energy to form equal number of completely new orbitals is said to be hybridization.
For the compound,
the electronic configuration of the atoms, carbon and hydrogen are:
Carbon (atomic number=6): In ground state= 
In excited state: 
Hydrogen (atomic number=1): 
All the bonds in the compound is single bond(
-bond) that is they are formed by head on collision of the orbitals.
The structure of the compound is shown in the image.
The Carbon-Hydrogen bond is formed by overlapping of s-orbital of hydrogen to p-orbital of carbon.
In order to complete the octet the required number of electrons for carbon is 4 and for hydrogen is 1. So, the electron in
of hydrogen will overlap to the 2p^{3}-orbital of carbon.
Thus, the hybridization of Hydrogen is
-hybridization and the hybridization of Carbon is
-hybridization.
The hybridization of each atom is shown in the image.
Answer:
Close to the calculated endpoint of a titration - <u>Partially open</u>
At the beginning of a titration - <u>Completely open</u>
Filling the buret with titrant - <u>Completely closed</u>
Conditioning the buret with the titrant - <u>Completely closed</u>
Explanation:
'Titration' is depicted as the process under which the concentration of some substances in a solution is determined by adding measured amounts of some other substance until a rection is displayed to be complete.
As per the question, the stopcock would remain completely open when the process of titration starts. After the buret is successfully placed, the titrant is carefully put through the buret in the stopcock which is entirely closed. Thereafter, when the titrant and the buret are conditioned, the stopcock must remain closed for correct results. Then, when the process is near the estimated end-point and the solution begins to turn its color, the stopcock would be slightly open before the reading of the endpoint for adding the drops of titrant for final observation.
Answer:
1.72 L
Explanation:
Initial Temperature of the gas T =90°+273= 363 K
Initial Volume of the gas V1= 1.41 L
Final temperature of the gas T2= 170°c +273= 443 K
Final volume of the gas V2= ????
Using Charles law;
V1/T1 = V2/T2
V1T2= V2T1
V2= V1T2/T1
V2= 1.41×443/363
V2= 1.72 L
This is an ideal gas law question. You need to use the equation PV=nRt. First you need to find n, the number of mols of helium. The molar mass of helium is 4.00g/mol, and 18g/4.00g/mol = 4.5 mols of helium. Next you need to convert the temperature from Celsius to Kelvin, because only kelvin temperatures can go into the deal gas law equation. To convert 25C to kelvin, add 273. That gives you 298K. Now you can plug all of you information into the ideal gas law equation and solve for P, pressure.
PV=nRt
P(3.00L)=(4.5mol)(0.0821LatmbmolK)(298K)
P=36.70atm
Please give brainliest if this was helpful!