Answer:
it is called waning and waxing It's because the moon is a world in space, just as Earth is. Like Earth, the moon is always half illuminated by the sun; the round globe of the moon has a day side and a night side. And, like Earth, the moon is always moving through space. it is also because of the position of the earth and the moon.
Explanation:
Answer: All of the statements are true.
Explanation:
(a) Considering the system mentioned in the equation:-
The sum of total moles in the flask will always be equal to 1 which leads to confirmation of this statement as for 60 secs= 0.16 mol A and 0.84 mol B
(b) 0<t< 20s, mole A got reduced from 1 mole to 0.54 moles while at 40s to 60s A got decreased from 0.30 moles to 0.16 moles.
0 to 20s is 0.46 (1 - 0.54 = 0.46)mol whereas,
40 to 60s is 0.14 (0.30-.16 = 0.14) mol
(0.46 > 0.14) mol leading this statement to be true as well.
(c) Average rate from t1 = 40 to t2 = 60 s is given by:
which is true as well
Answer:
1.22 mL
Explanation:
Let's consider the following balanced reaction.
2 AgNO₃ + BaCl₂ ⇄ Ba(NO₃)₂ + 2 AgCl
The molar mass of silver chloride is 143.32 g/mol. The moles corresponding to 0.525 g are:
0.525 g × (1 mol/143.32 g) = 3.66 × 10⁻³ mol
The molar ratio of AgCl to BaCl₂ is 2:1. The moles of BaCl₂ are 1/2 × 3.66 × 10⁻³ mol = 1.83 × 10⁻³ mol.
The volume of 1.50 M barium chloride containing 1.83 × 10⁻³ moles is:
1.83 × 10⁻³ mol × (1 L/1.50 mol) = 1.22 × 10⁻³ L = 1.22 mL
Answer:
The Michaelis‑Menten equation is given as
v₀ = Kcat X [E₀] X [S] / (Km + [S])
where,
Kcat is the experimental rate constant of the reaction; [s] is the substrate concentration and
Km is the Michaelis‑Menten constant.
Explanation:
See attached image for a detailed explanation
Answer:
See the explanation
Explanation:
1) The Lewis structure for
has a central Carbon<em> </em>atom attached to Oxygen atoms.
In the
we will have a structure: O=C=O the <u>central atom</u> "carbon" we will have <u>2 sigma bonds and 2 pi bonds</u>, therefore, we have an <u>Sp hybridization</u>. For O we have <u>1 pi and 1 sigma bond</u>, therefore, we have an <u>Sp2 hybridization</u>.
2) These atoms are held together by <u>double bonds.</u>
<u></u>
Again in the structure of
: O=C=O we only have double bonds.
3. Carbon dioxide has a Carbon dioxide has a <u>Linear</u> electron geometry.
Due to the double bonds we have to have a linear structure because in this geometry the atoms will be further apart from each other.
4. The carbon atom is <u>Sp</u> hybridized.
We will have for carbon 2 pi bonds, so we will have an <u>Sp</u> hybridization.
5. Carbon dioxide has two Carbon dioxide has two C(p) - O(p) π bonds and two C(sp) - O(Sp2) σ bonds.
(See figures)
Figure 1: Carbon hybridization
Figure 2: Oxygen hybridization