answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lesechka [4]
2 years ago
13

In each row, check the box under the compound that can reasonably be expected to be more acidic in aqueous solution, e.g. have t

he larger Ka
a) HCH3CO2 vs HCH3SO2

b) H3PO4 vs H3PO3

c HClO2 vs HClO

Please explain why.

Chemistry
1 answer:
vredina [299]2 years ago
4 0

Answer:

HCH_{3}SO_{2}

H_{3}PO_{3}

HClO_{2}

Explanation:

Every acid (HA) tends to disolve into proton (H^{+}) and anion (A^{-}) in aqueous solution. Acid strength can be determined by measuring this tendency to separate into proton an anion. Strength of an acid can be quantified by its acid dissociation value - Ka. A strong acid will have a tendency to easily release proton and will have larger Ka value and smaller logarithmic value (pKa = - logKa) similar to calculating pH of the solution. So the easiest way to resolve this issue is by looking for Ka or pKa value of the acid (This table may be useful in more complex tasks and is attached below). However, stronger acid can be determined elsehow.

a) Carbon is element 14 with 4 valent electrons and sulfur is element 16 with 6 valence electrons. Thus, sulfur has stronger electronegativity (tendency to attract bonded electrons towards itself). This means that sulfur will hold oxygen tighter to itself so the hydrogen bond to it can be more easily separated from it. HCH_{3}SO_{2} is more acidic in aqueous solution.

b) In H_{3}PO_{4}, phosphorus holds one double bond with oxygen and three OH group equally. To show an acidic tendency, phosphorus would need to let go one hydrogen out of one of OH groups. In H_{3}PO_{3}, phosporus holds two double bong with oxygen, one OH and one hydrogen, all single and lonely, ready to leave phosphorus and show acidic characteristics in aqueous solution. Thus, H_{3}PO_{3} is more acidic compound.

C) In all Cl acids, the electron density is placed around Cl so the more oxygen around Cl, the more acidic will be the chemical. This is comparable to an oxidation state - the bigger oxidation state, the stronger acid will be:

HClO_{4}  ^{+7} >HClO_{3}^{+5} >HClO_{2}^{+3} >HClO_{}^{+1}

HClO_{2} can reasonably be expected to be more acidic in aqueous solution.

You might be interested in
describe the energy inputs and outputs for the campfire. Use the law of conservation of energy to construct a valid qualitative
-Dominant- [34]

Answer:

The essence including its particular subject is outlined in the following portion mostly on clarification.

Explanation:

  • The energy throughout the campfire comes from either the wood's latent chemical energy until it has been burned to steam up and launch up across the campfire. The electricity generation for something like a campfire seems to be in the context including its potential chemical energy which is contained throughout the firewood used only to inflame the situation.
  • The energy output seems to be in the different types of heat energy radiating across the campfire, laser light generated off by the blaze, and perhaps a little number of electrical waves, registered throughout the firewood cracking whilst they combust throughout the blaze.

and,

chemical energy ⇒ heat energy + light energy + sound energy

6 0
1 year ago
A saturated solution of potassium iodide contains, in each 100 mL, 100 g of potassium iodide. The solubility of potassium iodide
Oksanka [162]

Answer:

Specific gravity of the saturated solution is 2

Explanation:

The specific gravity is defined as the ratio between density of a solution (In this case, saturated solution of potassium iodide, KI) and the density of water. Assuming density of water is 1:

Specific gravity  = Density

The density is the ratio between the mass of the solution and its volume.

In 100mL of water, the mass of KI that can be dissolved is:

100mL * (1g KI / 0.7mL) = 143g of KI

That means all the 100g of KI are dissolved (Mass solute)

As the volume of water is 100mL, the mass is 100g (Mass solvent)

The mass of the solution is 100g + 100g = 200g

In a volume of 100mL, the density of the solution is:

200g / 100mL = 2g/mL.

The specific gravity has no units, that means specific gravity of the saturated solution is 2

5 0
1 year ago
Salts and acids are examples of inorganic compounds called _____, which dissociate in water to release ions.
Blizzard [7]

Answer:

Salts and acids are examples of inorganic compounds called <u><em>electrolytes</em></u>.

Explanation:

Electrolytes are the substances which dissociates into ions when dissolved in water and due to this they are able to conduct electric current through them.  These compounds in solid form does not conduct electricity due to the absence of free ions.

For example: Sodium chloride , sulfuric acid etc.

NaCl(aq)\righarrow = Na^+(aq)+Cl^-(aq)

H_2SO_4(aq)\rightarrow SO_4^{2-}(aq)+2H^+(aq)

4 0
2 years ago
Read 2 more answers
You are asked to determine the mass of a piece of copper using its reported density, 8.96 g/ml, and a 150-ml graduated cylinder.
kakasveta [241]

Answer:- Mass of copper piece is 290 gram.

Solution:- We know that, mass = density * volume

density of copper is given as 8.96 gram per mL.

Volume of copper piece is the rise change in volume.

Volume of copper piece = 137 mL - 105 mL = 32 mL

Let's multiply the volume by density to calculate the mass of copper:

mass of copper = 32mL(\frac{8.96g}{mL})

mass of copper = 286.72 g

Volume has two significant figures, so if we round the mass to two significant figures then it becomes 290 g.

7 0
2 years ago
Read 2 more answers
Estimate ΔG°rxn for the following reaction at 387 K. HCN (g) + 2 H2 (g) → CH3NH2 (g) ΔH° = −158.0 kJ; ΔS° = −219.9
Lina20 [59]

Answer:

ΔG°rxn = -72.9 kJ

Explanation:

Let's consider the following reaction.

HCN(g) + 2 H₂(g) → CH₃NH₂(g)

We can calculate the standard Gibbs free energy of the reaction (ΔG°rxn) using the following expression:

ΔG°rxn = ΔH° - T.ΔS°

where,

ΔH° is the standard enthalpy of the reaction

T is the absolute temperature

ΔS° is the standard entropy of the reaction

ΔG°rxn = -158.0 KJ - 387 K × (-219.9 × 10⁻³ J/K)

ΔG°rxn = -72.9 kJ

4 0
2 years ago
Other questions:
  • The CN– ion is widely used in the synthesis of organic compounds. What is the pattern of electron pairs in this ion? How many bo
    12·1 answer
  • A mixture of 60 mol % n-propylcyclohexane and 40 mol % n-propylbenzene is distilled through a simple distillation apparatus; ass
    7·1 answer
  • Gordon wrote this passage about mechanical waves for his physics class. But he got most of his facts mixed up. Only one sentence
    6·2 answers
  • 84. Heavy water, D2O (molar mass = 20.03 g mol–1), can be separated from ordinary water, H2O (molar mass = 18.01), as a result o
    10·1 answer
  • 450g of chromium(iii) sulfate reacts with excess potassium phosphate. How many grams of potassium sulfate will be produced? (ANS
    9·1 answer
  • The rate law for the reaction
    11·1 answer
  • 2. A compound with the following composition by mass: 24.0% C, 7.0% H, 38.0% F, and 31.0% P. what is the empirical formula
    7·1 answer
  • ) Based on the graph, determine the order of the decomposition reaction of cyclobutane at 1270 K. Justify your answer.
    5·1 answer
  • Eugenol is a molecule that contains the phenolic functional group. Which option properly identifies the phenol in eugenol
    8·1 answer
  • A 0.6113-g sample of Dow metal, containing aluminum, magnesium, and other metals, was dissolved and treated to prevent interfere
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!