We use the formula:
PV = nRT
First let us get the volume V:
volume = 14 ft * 12 ft * 10 ft = 1,680 ft^3
Convert this to m^3:
volume = 1680 ft^3 * (1 m / 3.28 ft)^3 = 47.61 m^3
n = PV / RT
n = (1 atm) (47.61 m^3) / (293.15 K * 8.21x10^-5 m3 atm /
mol K)
<span>n = 1,978.13 mol</span>
Explanation:
Since the wheel moves up and down, the position that represents the potential energy is that which has the maximum height from the ground.
Potential energy is the energy at rest of a body.
It is given as:
Potential energy = m x g x h
m is the mass of the body
g is the acceleration due to gravity
h is the height of the body
We can see that mass and height are directly related to the potential energy a body exerts.
The higher the wheel from ground, the higher its potential energy.
learn more
Potential energy brainly.com/question/10770261
#learnwithBrainly
The concentration of sodium and sulphate ions are [
] = 0.4 M, [
] = 0.2 M
Explanation:
The molar concentration is defined as the number of moles of a molecule or an ion in 1 liter of a solution.
In the given solution, the concentration of the salt sodium sulphate is 0.2M. So, 0.2 moles of sodium sulphate is present in 1 liter of solution.
Assuming 100% dissociation,
1 molecule of sodium sulphate gives 2 ions of sodium and 1 ion of sulphate.
So 0.2 moles of sodium sulphate will give 0.4 moles of sodium ions and 0.2 moles of sulphate ions.
Answer:
The element is Na
Explanation:
Ionization energy is the energy needed to release the last electron from an atom in its ground state to the gaseous state. It is a periodic property that increases as we go through the periods of the periodic table, but decreases if we move in groups. Sodium has thr ionic radius (another periodic property) that is too large, making it easier to release the electron away, since it is too far from the nucleus.
Answer: the HCO3- to act as a base and remove excess H by the formation of H2CO3
Explanation:
H2CO3 in an aqueous solution is a buffer. This means the reaction is the following:
H2CO3 ------ HCO3- + H+
Then, the HCO3- that was formed acts as a base (absorbing a proton) like this
HCO3- + H+ ------- H2CO3
If there was an increase in H+, there would be an increase in the second reaction in an effort to neutralize that acid, thus making the H2CO3 more concentrated