Answer:
-86.02 kJ/ mole
Explanation:
The moles of the acid used = Molarity × Volume (L) =
= 0.50 (0.0372 L)
= 0.0186 moles
The heat released = -1.6 kJ
∴ 0.0186 moles neutralization of HA heat is: -1.6 kJ
The molar heat of neutralization due to one mole of the unknown acid = -1.6/0.0186
= -86.02 kJ/ mole
Answer:
it will not be soluble in water Becoz it can only be
separated by passing it through silver nitrate solution
Explanation:
i hope you understand
Bronze alloy and porcelain dentures
So here's how you find the answer:
Given: (rate constants)
K₁ = 4.0 x 10⁻⁴ M⁻¹s⁻¹.
T₁ = 25.0 C = 293 K.
k₂ = 2.6 x10⁻³ M⁻¹s⁻¹.
T₂ = 42.4 C = 315.4 K.
R = 8,314 J/K·mol.
Use the equation:
ln(k₁/k₂) = Ea/R (1/T₂ - 1/T₁).
Transpose:
Ea = R·T₁·T₂ / (T₁ - T₂) · ln(k₁/k₂)
Substitute within the given transposed equation:
<span>Ea = 8,314 J/K·mol · 293 K · 315.4 K ÷ (293 K - 315.4 K) · ln (4.0 x 10⁻⁴ M⁻¹s⁻¹/ 2.6 x 10⁻³ M⁻¹s⁻¹).
</span>
Continuing the solution we get:
<span>Ea = 768315 J·K/mol ÷ (-22,4 K) * (-1.87)
</span>
The value of EA is:
<span>Ea = 64140.58 J/mol ÷ 1000 J/kJ = 64.140 kJ/mol.</span>