Answer:
The cuvette was blank with the solution so that the spectrometer will only read the solute absorbance. This also ensures that the spectrometer will ignore other absorbance fluctuations that normally occur due to the chemical make-up of water. The spectrometer only considered the absorbance of
as indicated on the spectrum. The reaction between the
and the
are both clear liquids that form the orange liquid product
which creates the absorbance spectrum. Because the color of the solution is orange, it reflects this and similar colors while absorbing blueish hues. We can find the absorption of only the
by pre-rinsing the cuvette with each solution we intend to measure before placing it in the spectrometer. Also, wipe each cuvette with a kimwipe to remove all fingerprints that could effect the data collection.
Explanation:
The cuvette was blank with the solution so that the spectrometer will only read the solute absorbance. This also ensures that the spectrometer will ignore other absorbance fluctuations that normally occur due to the chemical make-up of water. The spectrometer only considered the absorbance of
as indicated on the spectrum.
25 g of NH₃ will produce 47.8 g of (NH₄)₂S
<u>Explanation:</u>
2 NH₃ + H₂S ----> (NH₄)₂S
Molecular weight of NH₃ = 17 g/mol
Molecular weight of (NH₄)₂S = 68 g/mol
According to the balanced reaction:
2 X 17 g of NH₃ produces 68 g of (NH₄)₂S
1 g of NH₃ will produce
g of (NH₄)₂S
25g of NH₃ will produce
of (NH₄)₂S
= 47.8 g of (NH₄)₂S
Therefore, 25 g of NH₃ will produce 47.8 g of (NH₄)₂S
Answer:
50 g of S are needed
Explanation:
To star this, we begin from the reaction:
S(s) + O₂ (g) → SO₂ (g)
If we burn 1 mol of sulfur with 1 mol of oxygen, we can produce 1 mol of sulfur dioxide. In conclussion, ratio is 1:1.
According to stoichiometry, we can determine the moles of sulfur dioxide produced.
100 g. 1mol / 64.06g = 1.56 moles
This 1.56 moles were orginated by the same amount of S, according to stoichiometry.
Let's convert the moles to mass
1.56 mol . 32.06g / mol = 50 g
The answer should be <span>enteropeptidase
</span>
Answer:
2.12×10²³ atoms.
Explanation:
From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.02×10²³ atoms. This simply means that 1 mole of zirconium also 6.02×10²³ atoms.
Thus, we can obtain the number of atoms present in 0.3521 mole of zirconium as follow:
1 mole of zirconium also 6.02×10²³ atoms.
Therefore, 0.3521 mole of zirconium will contain = 0.3521 × 6.02×10²³ = 2.12×10²³ atoms.
Therefore, 0.3521 mole of zirconium contains 2.12×10²³ atoms.