Answer : The enthalpy change for converting 1 mole of ice at
to water at
is, 7.712 KJ
Solution :
Process involved in the calculation of enthalpy change :

Now we have to calculate the enthalpy change.
![\Delta H=[m\times c_{ice}\times (T_2-T_1)]+\Delta H_{fusion}+[m\times c_{water}\times (T_3-T_2)]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5Bm%5Ctimes%20c_%7Bice%7D%5Ctimes%20%28T_2-T_1%29%5D%2B%5CDelta%20H_%7Bfusion%7D%2B%5Bm%5Ctimes%20c_%7Bwater%7D%5Ctimes%20%28T_3-T_2%29%5D)
where,
= enthalpy change
m = mass of water = 
= specific heat of ice = 2.09 J/gk
= specific heat of water = 4.18 J/gk
= enthalpy change for fusion = 6.01 KJ/mole = 0.00601 J/mole
conversion : 
= initial temperature of ice = 
= final temperature of ice = 
= initial temperature of water = 
= final temperature of water = 
Now put all the given values in the above expression, we get
![\Delta H=[18g\times 2.09J/gK\times (273-248)k]+0.00601J+[18g\times 4.18J/gK\times (363-273)k]](https://tex.z-dn.net/?f=%5CDelta%20H%3D%5B18g%5Ctimes%202.09J%2FgK%5Ctimes%20%28273-248%29k%5D%2B0.00601J%2B%5B18g%5Ctimes%204.18J%2FgK%5Ctimes%20%28363-273%29k%5D)
(1 KJ = 1000 J)
Therefore, the enthalpy change for converting 1 mole of ice at
to water at
is, 7.712 KJ
Complete question:
Consider the reaction.
At equilibrium at 600 K, the concentrations are as follows.
2HF -----> H₂ + F₂
[HF] = 5.82 x 10-2 M
[H2] = 8.4 x 10-3 M
[F2] = 8.4 x 10-3 M
What is the value of Keq for the reaction expressed in scientific notation?
2.1 x 10-2
2.1 x 102
1.2 x 103
1.2 x 10-3
Answer:
2.1 × 10^-2
Explanation:
Kequilibrum(Keq) = product/reactant
Equation for the reaction :
2HF -----> H₂ + F₂
Therefore,
Keq = [H2][F2] / [HF]^2
Keq = [8.4 x 10-3][8.4 x 10-3] / [5.82 x 10-2]^2
Keq = [70.56 × 10^(-3 + - 3)]/[33.8724 × 10^(-2×2)]
Keq = [70.56 × 10^-6] / [33.8724 × 10^-4]
Keq = 2.0665 × 10^(-6 - (-4))
Keq = 2.0665 × 10^(-6 + 4)
Keq = 2.1 × 10^-2
Answer:
The plastic wrap of the covered cup acts like the atmosphere, and traps the water vapor. In a real cloud, the water vapor cools back into liquid water. In the covered cup, the air can only hold so much vapor, and the vapor condenses back to liquid water forming a “rain cloud” on the plastic wrap.
Explanation:
Answer:
Hydrogen ions or protons
Explanation:
Electron transport carriers is a series of complexes that transfer electrons from electron donors to electron acceptors via redox reactions, and couples this electron transfer with the transfer of protons (H+ ions) across a membrane. This creates an electrochemical proton gradient that drives the synthesis of ATP, a molecule that stores energy chemically in the form of highly strained bonds. The molecules of the chain include peptides, enzymes (which are proteins or protein complexes), and others. The final acceptor of electrons in the electron transport chain during aerobic respiration is molecular oxygen although a variety of acceptors other than oxygen such as sulfate exist in anaerobic respiration.