Answer:
Use E = h*c / lambda, where h is Planck's constant, c is the speed of light, and lambda is the wavelength.
E = (6.626 * 10^-34 J*s x 3.00 * 10^8 m/s) / (1*10^-6 m) = 1.99 * 10^-19 J
Explanation:
Answer:
Here's what I get.
Explanation:
The frequency of a vibration depends on the strength of the bond (the force constant).
The stronger the bond, the more energy is needed for the vibration, so the frequency (f) and the wavenumber increase.
Acetophenone
Resonance interactions with the aromatic ring give the C=O bond in acetophenone a mix of single- and double-bond character, and the bond frequency = 1685 cm⁻¹.
p-Aminoacetophenone
The +R effect of the amino group increases the single-bond character of the C=O bond. The bond lengthens, so it becomes weaker.
The vibrational energy decreases, so wavenumber decreases to 1652 cm⁻¹.
p-Nitroacetophenone
The nitro group puts a partial positive charge on C-1. The -I effect withdraws electrons from the acetyl group.
As electron density moves toward C-1, the double bond character of the C=O group increases.
The bond length decreases, so the bond becomes stronger, and wavenumber increases to 1693 cm¹.
Answer: p2 = 1.06p1
Explanation: pressure increases with temperature increase.
According to Gass law
P1/T1 = P2/T2
T1 = 20°c = 20 +273 = 293k
T2 = 40°c = 40 +373 = 313k
Therefore
P2 = P1T2/T1 = 313P2/293
P2 = 1.06P1
Answer:
The answer is "Option b and Option c".
Explanation:
This buffer is a buffer of ammonia and ammonium ion. Thus it requires the solution
.
In point 1:
The solution containing
at 1M concentration would be given by mixing the two solutions. Thus, this buffer is a legitimate route.
In point 2:
It gives the ions you want but they are not the same.
In point 3:
and 
volume would not produce the same
concentrations. Therefore, this buffer isn't a valid route.
In point 4:
Some
volume and half
. This offers the same rate as half.
Answer: The correct answer is: the water can transfer heat to your arm more quickly than the air.
Explanation: The heat is transferred from the air or water to your arm through convection. The convective heat transfer coefficient of water is higher than the air's, so, even though the temperature of boiling water is lower, the heat will be transferred more efficiently to the other surface, in this case, the hand.