answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leno4ka [110]
2 years ago
10

A sample of an unknown substance has a mass of 0.158 kg. If 2,510.0 J of heat is required to heat the substance from 32.0°C to 6

1.0°C, what is the specific heat of the substance?
Chemistry
1 answer:
Alexxandr [17]2 years ago
5 0
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.

H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)

C = 545.8 J/kg</span>·°C
You might be interested in
The greatest amount of energy released per gram of reactants occurs during a(1) redox reaction
LenKa [72]
The greatest amount of energy released per gram of reactants occurs during a (1) redox reaction, although it should be noted that there are exceptions depending on environment. 
5 0
1 year ago
Classify the following as a type of potential energy or kinetic energy (use the letters K or P)
Zanzabum
K, P, K, K, P, K, K, P, K, P. If it is moving, it is kinetic, if it isn't, it's potential. the sugar one is a little tricky using that method though, because we generally consider this in terms of spacial movement, but sugar holds energy which is later released by your body to allow you to move.the chemical bonds have potential energy because they release energy when broken.
5 0
1 year ago
Read 2 more answers
A student performs an experiment to determine the volume of hydrogen gas produced when a given mass of magnesium reacts with exc
ira [324]

Answer:

(a) 0.0015 mol Mg

(b) 0.0030 mol HCl

(c) 728 torr

(d) 0.038 L

(e) See below

Explanation:

This problem is a calculation based on the stoichiometry for the reaction:

2 H⁺ (aq)  + 2 Cl⁻ + Mg   ⇒   Mg²⁺ (aq) + 2 Cl⁻ (aq) + H₂ (g)

Given the mass of Mg reacted, we have:

Atomic Weight Mg = 24.3 g/mol

(a) Mole Mg reacted = mass/AW = 0.0360 g/ 24.3  g/mol =  0.0015 mol

(b) Moles HCl needed:

2 mol HCl/ 1 mol Mg  x 0.0015 mol Mg = 0.0030 mol HCl

(c) Since we are collecting the Hydrogen gas produced in the reaction over water we need to substract the water vapor pressure from the pressure measured in the lab to obtain the dry pressure:

Pdry = 749 torr - 21 torr = 728 torr

(d) The volume of the Hydrogen gas is obtained from the ideal gas law since we know the temperature and the dry pressure:

PV = nRT ∴ V = nRT/ P

we would need first  to convert the pressure to atmospheres:

P= 728 torr x  1 atm/760 torr = 0.96 atm

Then,

mol H₂ gas produced:

From the balanced chemical equation,

1 mol H2/ 1 mol Mg x 0.015 mol Mg = 0.0015 mol

Now we have all we need to calculate the volume:

V = 0.0015 mol x 0.0821 Latm/Kmol x (23 + 273) K/ 0.96 atm = 0.038 L

(e ) When handling acids such as HCl it is required the use of safety goggles, acid resistant gloves and lab coat. It is also required to work under a safety hood since the vapors of HCl are toxic when inhaled.

To prepare 50.0 mL 2.0 M solution from the 12.3 M we will dilute it according to the following calculation:

V₁M₁ = V₂M₂  ⇒ V₁ = V₂M₂ /M₁

where V₁ is the volume of the 12.3 M HCl solution we are going to dilute, and V₂ is the 50.0 mL solution 2.0 M needed.

V₁ = 50.0 mL x 2.0 M / 12.3 M = 8.13 mL

Notice that in the above equation we do not need to convert the mL to L since V appears in both sides of the equation  and will give us the volume in mL.

Now 8.13 mL is difficult to measure  with a 10 ml graduated cylinder where we can read to 0.2 mL unless we accept the error.

So we need to calculate the mass of concentrated acid required by computing its density

We can calculate the density of the 12.3 M solution using a tared  10 mL graduated  by taking  say 10 mL of the the solution, weighting it, and calculating the density = mass of solution / volume.

Knowing the density we can calculate the mass of 12.3 M a volume of 8.13 mL weighs.

Place approximately 35 mL of distilled water in the volumetric flask and  tare  in the balance.

Add  say 7 mL  of 12.3 M HCl in the graduated cylinder  to the volumetric flask being careful  towards the end  to add  the last portions using the dropper to complete the required mass using   the balance.

Finally dilute to the 50 mL mark.

Again use all of the safety precautions indicated above and avoid any contact of the acid with the skin.

3 0
1 year ago
Luis is helping his parents paint a border around the walls of a room. He uses a stencil to repeat the same design on each wall
Vinvika [58]
The answer to your question is d
3 2
1 year ago
Read 3 more answers
What happens to energy when Sally kicks a soccer ball?
Vinvika [58]

Answer:

Kinetic energy is transferred from the leg to the soccer ball.

Explanation:

4 0
2 years ago
Read 2 more answers
Other questions:
  • The temperature of 100. grams of water changes from 16.0ºC to 20.0ºC. What is the total number of Joules of heat energy absorbed
    10·2 answers
  • The closeness of particles of gas and their low speeds allow intermolecular forces to become important at certain pressures and
    5·2 answers
  • Suppose you are measuring the mass of a sample using a balance that employs a standard mass of density dw = 8.0 g/ml. what is th
    7·1 answer
  • A 141mg sample was placed on a watch glass that has a mass of 9.203g. what is the mass of the watch glass and sample in grams?
    11·1 answer
  • A goldsmith melts 12.4 grams of gold to make a ring. The temperature of the gold rises from 26°C to 1064°C, and then the gold me
    15·1 answer
  • When acids react with water, ions are released which then combine with water molecules to form .
    7·2 answers
  • A student runs an experiment in the lab and then uses the data to prepare an Arrhenius plot of the natural log of the rate const
    13·1 answer
  • Calculate Δ H o for the reaction. CH3OH + HCl → CH3Cl + H2O answer is in kJ/mol .
    14·1 answer
  • The table above summarizes data given to a student to evaluate the type of change that took place when substance X was mixed wit
    6·1 answer
  • Calculate the molar mass of a 2.89 g gas at 346 ml, a temperature of 28.3 degrees Celsius, and a pressure of 760 mmHg.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!