Answer:
usually the perfumes are made of aromatic hydrocarbons invloving
cetone, ethanol, benzaldehyde, formaldehyde, limonene, methylene chloride, camphor, ethyl acetate, linalool and benzyl alcohol. which have density lower than the water hence they will float on the top of the water.
Hope this helps you
Explanation:
Answer:
THE CURRENT REQUIRED TO PRODUCE 193000 C OF ELECTRICITY IS 35.74 A.
Explanation:
Equation:
Al3+ + 3e- -------> Al
3 F of electricity is required to produce 1 mole of Al
3 F of electricity = 27 g of Al
If 18 g of aluminium was used, the quantity of electricity to be used up will be:
27 g of AL = 3 * 96500 C
18 G of Al = x C
x C = ( 3 * 96500 * 18 / 27)
x C = 193 000 C
For 18 g of Al to be produced, 193000 C of electricity is required.
To calculate the current required to produce 193 000 C quantity of electricity, we use:
Q = I t
Quantity of electricity = Current * time
193 00 = I * 1.50 * 60 * 60 seconds
I = 193 000 / 1.50 * 60 *60
I = 193 000 / 5400
I = 35.74 A
The cuurent required to produce 193,000 C of electricity by 18 g of aluminium is 35.74 A
Answer:
The final pressure of the gas mixture after the addition of the Ar gas is P₂= 2.25 atm
Explanation:
Using the ideal gas law
PV=nRT
if the Volume V = constant (rigid container) and assuming that the Ar added is at the same temperature as the gases that were in the container before the addition, the only way to increase P is by the number of moles n . Therefore
Inicial state ) P₁V=n₁RT
Final state ) P₂V=n₂RT
dividing both equations
P₂/P₁ = n₂/n₁ → P₂= P₁ * n₂/n₁
now we have to determine P₁ and n₂ /n₁.
For P₁ , we use the Dalton`s law , where p ar1 is the partial pressure of the argon initially and x ar1 is the initial molar fraction of argon (=0.5 since is equimolar mixture of 2 components)
p ar₁ = P₁ * x ar₁ → P₁ = p ar₁ / x ar₁ = 0.75 atm / 0.5 = 1.5 atm
n₁ = n ar₁ + n N₁ = n ar₁ + n ar₁ = 2 n ar₁
n₂ = n ar₂ + n N₂ = 2 n ar₁ + n ar₁ = 3 n ar₁
n₂ /n₁ = 3/2
therefore
P₂= P₁ * n₂/n₁ = 1.5 atm * 3/2 = 2.25 atm
P₂= 2.25 atm
Well, you didn't give me any options so if this isn't the answer to your pacific question then I apologize.
but most likely a steel smelting facility.
Hope this helps
This question could be answered easily if the results of the abundance of the other elements are given. You will just have to subtract the sum of all their abundances to 100. Since it's not given, the solution would just be:
Na = 23 g/mol* 1 = 23 g
H = 1 g/mol * 1 = 1 g
C = 12 g/mol * 1 = 12 g
O = 16 g/mol * 3 = 48 g
Total = 84 g
% O = 48/84 * 100 = <em>57.14%</em>