Answer:
This question is incomplete
Explanation:
This question is incomplete but what you should know is that isopropanol (also referred to rubbing alcohol) has just one functional group. This functional group is called the hydroxyl group (-OH) and it's the reason the compound name ends with "ol". The hydroxyl group can be seen in the structure of the compound (Isopropanol) below
H OH H
| | |
H- C - C - C - H
| | |
H H H
If there is any functional group in isopropanol required for any form of interaction, that functional group will be the hydroxyl group because that's the only functional group isopropanol has.
NOTE: Functional group is an atom or group of atoms that determines the chemical properties of a compound.
The lower the specific heat the faster the temperaature will change.
You can learn it from the formula:
Q = m * Cs * ΔT
You can solve for ΔT
ΔT = Q / ( m * Cs)
Given the heat (Q) and m (100 g) are equal for the five samples:
ΔT = [Q / m] / Cs. = constat / Cs
So you see the inverse relation between the change of temperatura and the specific heat.
So, the order of change of temperature is given by the specific heat: the lower the specific heat the faster the change of temperature.
With that analysis you can calculate the order in which the cubes will reach the target temperature.
Answer:
A. There is more dissolved oxygen in colder waters than in warm water.
D. If ocean temperature rise, then the risk to the fish population increases.
Explanation:
Conclusion that can be drawn from the two facts stated above:
*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.
*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.
*Fishes, therefore, would thrive best in colder waters than warmer waters.
The following are scenarios that can be explained by the facts given and conclusions arrived:
A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)
D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).
The rate of Formation of Carbocation mainly depends on two factors'
1) Stability of Carbocation: The ease of formation of Carbocation mainly depends upon the ionization of substrate. If the forming carbocation id tertiary then it is more stable and hence readily formed as compared to secondary and primary.
2) Ease of detaching of Leaving Group: The more readily and easily the leaving group leaves the more readily the carbocation is formed and vice versa. In given scenario the carbocation formed is tertiary in all three cases, the difference comes in the leaving group. So, among these three substrates the one containing Iodo group will easily dissociate to form tertiary carbocation because due to its large size Iodine easily leaves the substrate, secondly Chlorine is a good leaving group compared to Fluoride. Hence the order of rate of formation of carbocation is,
R-I > R-Cl > R-F
B > C > A