Answer:
it messes with the H2O or water level in your skin
Explanation:
The lower the pKa<span> of a Bronsted acid, the more easily it gives up its proton. The </span>higher<span> the </span>pKa<span> of a Bronsted acid, the more tightly the proton is held, and the less easily the proton is given up.
Here we need the highest pKa, so we need to see which compound will less likely to give proton or hydrogen ion.
</span><span>Now, all Nitrogen contains a lone pair. But HALOGEN groups( F, Cl, only) being electronegative than NITROGEN [electronegativity of N=3, F=4 and Cl=3], pulls electron pair towards itself.
</span>
The more the lone pair of nitrogen is pulled, the more strong bond between N and H will become, which means less likely to give hydrogen ion.
means high Pka
C) option is the answer because it has 3 F very close to N.
Answer is: <span> two samples have in common same amount of substance and same number of particles.
1) There are same amount of substance in both beakers:
n(Zn) = 1 mol.
n(ZnCl</span>₂) = 1 mol.
2) There are same number of particles (atoms, molecules, ions) in both beakers:
N(Zn) = n(Zn) · Na.
N(Zn) = 1 mol · 6.023·10²³ 1/mol = 6.023·10²³ atoms of zinc.
N(ZnCl₂) = n(ZnCl₂) · Na.
N(ZnCl₂) = 1 mol · 6.023·10²³ 1/mol = 6.023·10²³ molecules of zinc(II) chloride.
Na - Avogadro number.
The net ionic equation of borax hydrolysis would be:
<span>Na2B4O7 + 7H2O-----------------> 2 NaOH + 4 H3BO3
</span>
Wherein 2 moles of sodium hydroxide and 4 moles of boric acid are produced by the hydrolysis.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
One mole any substance contains 6.022 ₓ 10²³ particles called Avogadro's Number.
The relation between moles and number of particles is given as,
# of particles = moles ₓ Avogadro's number
In our case the particles are formula units of MgCO₃. So, 1 mole of MgCO₃ contain 6.022 ₓ 10²³ formula units, then the number of formula units in 1.72 moles are calculated as,
# of formula units = 1.72 mol ₓ 6.022 ₓ 10²³ formula units / mol
# of formula units = 1.035 ₓ 10²⁴ Formula Units