The force on the wall is actually the pressure exerted by gas molecules
Higher the pressure more the force exerted on the walls of container
The pressure depends upon the number of molecules of a gas
In a mixture of gas the pressure depends upon the mole fraction of the gas
As given the mole fraction of He is more than that of H2 therefore He will exert more pressure on the wall
The ratio of impact will be
H2 / He = 2/3 / 1/3 = 2: 1
<span>This is an example of a substance changing state, a physical change, the molecules are changed, but the atoms themselves do not change, just their arrangement, and the mass of the molecules is the same. Therefor energy is absorbed by the molecules, as energy is required to change the state or physicality of a molecule structure.Hope this helps. Let me know if you need additional help!</span>
Answer:
0.12693 mg/L
Explanation:
First we <u>calculate the concentration of compound X in the standard prior to dilution</u>:
- 10.751 mg / 100 mL = 0.10751 mg/mL
Then we <u>calculate the concentration of compound X in the standard after dilution</u>:
- 0.10751 mg/mL * 5 mL / 25 mL = 0.021502 mg/L
Now we calculate the<u> concentration of compound X in the sample</u>, using the <em>known concentration of standard and the given areas</em>:
- 2582 * 0.021502 mg/L ÷ 4374 = 0.012693 mg/L
Finally we <u>calculate the concentration of X in the sample prior to dilution</u>:
- 0.012693 mg/L * 50 mL / 5 mL = 0.12693 mg/L
Answer:
D. Intramolecular covalent bond
Explanation:
Compound D is structurally more rigid as a result of intramolecular covalent bonding. The forces that hold together atoms within a compound are greater as compared to forces holding two molecules together (intermolecular bonding). On the other hand Hydrogen bonds are weaker as compared to covalent bonds. Covalent bonds involve the sharing of electrons between two atoms and Hydrogen bonds are formed between a highly electronegative atom like oxygen, Flourine,Chlorine to hydrogen.
<span>0.127 moles
The formula for nitroglycerin is C3H5N3O9 so let's first calculate the molar mass of it.
Carbon = 12.0107
Nitrogen = 14.0067
Hydrogen = 1.00794
Oxygen = 15.999
C3H5N3O9 = 3 * 12.0107 + 5 * 1.00794 + 3 * 14.0067 + 9 * 15.999 = 227.0829
Now calculate the number of moles of nitroglycerin you have by dividing the mass by the molar mass
2.50 ml * 1.592 g/ml / 227.0829 g/mol = 0.017527 mol
The balanced formula for when nitroglycerin explodes is
4 C3H5N3O9 => 12 CO2 + 10 H2O + O2 + 6 N2
Since all of the products are gasses at the time of the explosion, there is a total of 29 moles of gas produced for every 4 moles of nitroglycerin
Now multiply the number of moles of nitroglycerin by 29/4
0.017527 mol * 29/4 = 0.12707075 moles
Round to 3 significant figures, giving 0.127 moles</span>