Answer:
THE CURRENT REQUIRED TO PRODUCE 193000 C OF ELECTRICITY IS 35.74 A.
Explanation:
Equation:
Al3+ + 3e- -------> Al
3 F of electricity is required to produce 1 mole of Al
3 F of electricity = 27 g of Al
If 18 g of aluminium was used, the quantity of electricity to be used up will be:
27 g of AL = 3 * 96500 C
18 G of Al = x C
x C = ( 3 * 96500 * 18 / 27)
x C = 193 000 C
For 18 g of Al to be produced, 193000 C of electricity is required.
To calculate the current required to produce 193 000 C quantity of electricity, we use:
Q = I t
Quantity of electricity = Current * time
193 00 = I * 1.50 * 60 * 60 seconds
I = 193 000 / 1.50 * 60 *60
I = 193 000 / 5400
I = 35.74 A
The cuurent required to produce 193,000 C of electricity by 18 g of aluminium is 35.74 A
The average mass of an atom is calculated with the formula:
average mass = abundance of isotope (1) × mass of isotope (1) + abundance of isotope (2) × mass of isotope (2) + ... an so on
For the boron we have two isotopes, so the formula will become:
average mass of boron = abundance of isotope (1) × mass of isotope (1) + abundance of isotope (2) × mass of isotope (2)
We plug in the values:
10.81 = 0.1980 × 10.012938 + 0.8020 × mass of isotope (2)
10.81 = 1.98 + 0.8020 × mass of isotope (2)
10.81 - 1.98 = 0.8020 × mass of isotope (2)
8.83 = 0.8020 × mass of isotope (2)
mass of isotope (2) = 8.83 / 0.8020
mass of isotope (2) = 11.009975
mass of isotope (1) = 10.012938 (given by the question)
We use the formula:
PV = nRT
First let us get the volume V:
volume = 14 ft * 12 ft * 10 ft = 1,680 ft^3
Convert this to m^3:
volume = 1680 ft^3 * (1 m / 3.28 ft)^3 = 47.61 m^3
n = PV / RT
n = (1 atm) (47.61 m^3) / (293.15 K * 8.21x10^-5 m3 atm /
mol K)
<span>n = 1,978.13 mol</span>