answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
2 years ago
15

Recall that your hypothesis is that these values are the fraction of atoms that are still radioactive after n half-life cycles.

Record in the appropriate blanks.

Chemistry
2 answers:
jolli1 [7]2 years ago
8 0

Answer : A= 0.5, B = 0.25 , C = 0.125, D = 0.015625 and E = 0.00390625

Explanation :

Half life of a substance is defined as the amount of time taken by the substance to reduce to half of its original amount.

Here n represents the number of half lives.

The amount of substance that remains after n half lives can be calculated using the given formula, 0.5^{n}

So when we have n =1,

Fraction of substance that remains = 0.5¹ = 0.5.

That means after first half life over, the amount of substance that remains is 0.5 times that of original.

Therefore we have A = 0.5

When n = 2, we have 0.5² = 0.25

So when 2 half lives are over, the amount of substance that remains is 0.25 times that of original

Therefore B = 0.25

When n = 3, we have 0.5³ = 0.125

So when 3 half lives are over, the amount of substance that remains is 0.125 times that of original.

Therefore we have C = 0.125

When n = 6 , we have 0.5⁶ = 0.015625

So D = 0.015625

When n = 8, we have 0.5⁸ = 0.00390625

Therefore E = 0.00390625

The values for A, B, C, D and E are 0.5, 0.25, 0.125, 0.015625 and 0.00390625 respectively.

9966 [12]2 years ago
7 0
A=0.5
B=0.25
C=0.125
D=0.015625
E=0.00390625
You might be interested in
Dolomite is a mixed carbonate of calcium and magnesium. Calcium and magnesium carbonates both decompose upon heating to produce
Setler79 [48]

Answer:

72.03 %

Explanation:

Total mass of dolomite = 9.66 g

Let the mass of Magnesium carbonate = x g

The mass of calcium carbonate = 9.66 - x g

Calculation of the moles of Magnesium carbonate as:-

Molar mass of Magnesium carbonate = 122.44 g/mol

The formula for the calculation of moles is shown below:

moles = \frac{Mass\ taken}{Molar\ mass}

Thus,

Moles= \frac{x\ g}{84.3139\ g/mol}=\frac{x}{84.3139}\ mol

Calculation of the moles of calcium carbonate as:-

Molar mass of calcium carbonate = 100.0869 g/mol

Thus,

Moles= \frac{9.66 - x\ g}{100.0869\ g/mol}=\frac{9.66 - x}{100.0869}\ mol

According to the reaction shown below:-

MgCO_3\rightarrow MgO+CO_2

CaCO_3\rightarrow CaO+CO_2

In both the cases, the oxides formed from the carbonates in the 1:1 ratio.

So, Moles of MgO = \frac{x}{84.3139}\ mol

Molar mass of MgO = 40.3044 g/mol

Thus, Mass = Moles*Molar mass = \frac{x}{84.3139}\times 40.3044 \ g

Moles of CaO = \frac{9.66 - x}{100.0869}\ mol

Molar mass of CaO = 56.0774 g/mol

Thus, Mass = Moles*Molar mass = \frac{9.66 - x}{100.0869}\times 56.0774 \ g

Given that total mass of the oxide = 4.84 g

Thus,

\frac{x}{84.3139}\times 40.3044 +\frac{9.66 - x}{100.0869}\times 56.0774=4.84

\frac{40.3044x}{84.3139}+56.0774\times \frac{-x+9.66}{100.0869}=4.84

-694.1618435x+45673.48749\dots =40843.38968\dots

x=\frac{4830.09780\dots }{694.1618435}

x=6.9582

Thus, the mass of Magnesium carbonate = 6.9582 g

\%\ mass=\frac{Mass_{MgCO_3}}{Total\ mass}\times 100

\%\ mass=\frac{6.9582}{9.66}\times 100=72.03\ \%

3 0
2 years ago
How many grams of C5H12 must be burned to heat 1.39 kg of water from 21.2 °C to 97.0 °C? Assume that all the heat released durin
faust18 [17]

Answer:

m = 8.9856 g

Explanation:

In order to do this, we need to write the expressions that are to be used. First, to calculate heat:

Q = m*C*ΔT (1)

Where C would be heat capacity of the substance.

The heat can also be relationed with the moles and enthalpy of a compound using the following expression:

Q = n*ΔH (2)

Finally for the mass of any compound, we use the following expression:

m = n*MM (3)

So, in order to calculate the grams of pentane (C5H12), we need to calculate the moles of the compound, and to do that, we need the heat exerted.

So, as we are using water, let's calculate the heat that is been exerted with the water. The C of the water is 4.186 J/g °C so:

Q = (1.39 * 1000) * 4.186 * (21.2 - 97)

Q = -441,045.33 J

This is the heat neccesary to burn pentane and heat water. Now, with this value, let's calculate the moles used of pentane with expression (2). The ΔH of the pentane is -3,535 045.kJ/mol or -3.535x10⁶ J/mol. Solving for n we have:

n = -441,045.3 / -3.535x10⁶

n = 0.1248 moles

Finally, we can calculate the grams needed with expression (3). The molar mass of pentane is 72 g/mol

m = 0.1248 * 72

m = 8.9856 g

This is the mass needed to heat 1.39 kg of water

6 0
2 years ago
Calcium hydroxide, Ca(OH)2, is used as a calcium nutritional supplement in some foods and beverages, such as orange juice. What
RSB [31]

Answer:

pH=11.08

Explanation:

Hello,

In this case, since calcium hydroxide a strong base, its dissociation will completely result in both calcium and hydroxyl ions:

Ca(OH)_2\rightarrow Ca^{2+}+OH^-

Thus, the concentration of hydroxyl ions equals that of the calcium hydroxide, with which we could compute the pOH as shown below:

pOH=-log([OH^-]}=-log(0.0012)\\\\pOH=2.92

Now, the pH and the pOH are related by:

pOH+pH=14

Hence, the pH finally results:

pH=14-pOH=14-2.92\\pH=11.08

Best regards.

4 0
2 years ago
When a pan containing liquid and solid water (ice water) is put over the flame of a stove and stirred vigorously 1. the temperat
nata0808 [166]
<span>When a pan containing liquid and solid water (ice water) is put over the flame of a stove and stirred vigorously:</span> <span>2. the temperature rises but only after the ice melts.
It is known that ice lower the temperature of solution, after ice is melt temperature of liquid start to rise normally. Temperature of ice is 0</span>°C.
3 0
2 years ago
A sample of an unknown substance has a mass of 0.158 kg. If 2,510.0 J of heat is required to heat the substance from 32.0°C to 6
JulijaS [17]
Specific heat is the amount of heat absorb or released by a substance to change the temperature to one degree Celsius. To determine the specific heat, we use the expression for the heat absorbed by the system. Heat gained or absorbed in a system can be calculated by multiplying the given mass to the specific heat capacity of the substance and the temperature difference. It is expressed as follows:
Heat = mC(T2-T1)
By substituting the given values, we can calculate for C which is the specific heat of the material.
2510 J = .158 kg ( 1000 g / 1 kg) (C) ( 61.0 - 32.0 °C)C = 0.5478 J / g °C
8 0
2 years ago
Read 2 more answers
Other questions:
  • Which equations shows the complete dissociation of a strong base?
    9·2 answers
  • Imagine that you combine lemon juice with baking soda in a glass. You see gas bubbles forming along the sides of the glass. How
    14·2 answers
  • a student adds 15 g of baking soda to 10 g of acetic acid in a beaker. a chemical reaction occurs and a gas is given off. after
    10·1 answer
  • Help in chemistry !!!!!!!
    14·1 answer
  • The following system is at equilibrium:
    10·1 answer
  • A closed vessel system of volume 2.5 L contains a mixture of neon and fluorine. The total pressure is 3.32 atm at 0.0°C. When th
    11·1 answer
  • What type of ossification occurs to form an immovable joint
    15·1 answer
  • In the first step of glycolysis, the given two reactions are coupled. reaction 1:reaction 2:glucose+Pi⟶glucose-6-phosphate+H2OAT
    13·1 answer
  • Is humidity a extensive or intensive property
    15·2 answers
  • which intensive physical property is observed when droppings of a person seated inside a closed room has able to reach a person
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!