answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
hram777 [196]
2 years ago
15

Recall that your hypothesis is that these values are the fraction of atoms that are still radioactive after n half-life cycles.

Record in the appropriate blanks.

Chemistry
2 answers:
jolli1 [7]2 years ago
8 0

Answer : A= 0.5, B = 0.25 , C = 0.125, D = 0.015625 and E = 0.00390625

Explanation :

Half life of a substance is defined as the amount of time taken by the substance to reduce to half of its original amount.

Here n represents the number of half lives.

The amount of substance that remains after n half lives can be calculated using the given formula, 0.5^{n}

So when we have n =1,

Fraction of substance that remains = 0.5¹ = 0.5.

That means after first half life over, the amount of substance that remains is 0.5 times that of original.

Therefore we have A = 0.5

When n = 2, we have 0.5² = 0.25

So when 2 half lives are over, the amount of substance that remains is 0.25 times that of original

Therefore B = 0.25

When n = 3, we have 0.5³ = 0.125

So when 3 half lives are over, the amount of substance that remains is 0.125 times that of original.

Therefore we have C = 0.125

When n = 6 , we have 0.5⁶ = 0.015625

So D = 0.015625

When n = 8, we have 0.5⁸ = 0.00390625

Therefore E = 0.00390625

The values for A, B, C, D and E are 0.5, 0.25, 0.125, 0.015625 and 0.00390625 respectively.

9966 [12]2 years ago
7 0
A=0.5
B=0.25
C=0.125
D=0.015625
E=0.00390625
You might be interested in
Based on the bond energies for the reaction below, what is the enthalpy of the reaction?HC≡CH (g) + 5/2 O₂ (g) → 2 CO₂ (g) + H₂O
Anuta_ua [19.1K]

Answer:

1219.5 kj/mol

Explanation:

To reach this result, you must use the formula:

ΔHºrxn = Σn * (BE reactant) - Σn * (BE product)

ΔHºrxn = [1 * (BE C = C) + 2 * (BE C-H) + 5/2 * (BE O = O)] - [4 * (BE C = O) + 2 * (BE O-H).

The BE values are:

BE C = C: 839 kj / mol

BE C-H: 413 Kj / mol

BE O = O: 495 kj / mol

BE C = O = 799 Kj / mol

BE O-H = 463 kj / mol

Now you must replace the values in the above equation, the result of which will be:

ΔHºrxn = [1 * 839 + 2 * (413) + 5/2 * (495)] - [4 * (799) + 2 * (463) = 1219.5 kj/mol

8 0
2 years ago
The student decided to do another experiment with his leftover copper(II) sulfate (CuSO4) solution. He divided the solution up i
lakkis [162]

Answer:

CuSO4 + Fe -> FeSO4 + Cu

Explanation:

This reaction is a classic example of a redox reaction. I won't go in too deep, but the basic thing is that electrons from the Fe atom go to the Cu2+ ion. Therefore, Fe becomes an ion, and Cu - an electroneutral atom:

Fe + Cu2+ -> Fe2+ + Cu.

Silver is not a very reactive metal and it does not give up its electrons to Cu.

6 0
2 years ago
The specific heat capacity of a pure substance can be found by dividing the heat needed to change the temperature of a sample of
mrs_skeptik [129]

Answer:

The answers to your questions are given below.

Explanation:

Data obtained from the question include:

Mass (M) = 420.0 g

Temperature change (ΔT) = 43.8 °C

Specific heat capacity (C) = 3.52 J/g °C

Heat needed (Q) =...?

The heat needed for the temperature change can be obtained by using the following formula:

Q = MCΔT

Where:

Q is the heat needed measured in joule (J).

M is the mass of substance measured in grams (g)

C is the specific heat capacity of the substance with unit J/g °C.

ΔT is the temperature change measured in degree celsius (°C).

Thus, we can calculate the heat needed to change the temperature as follow:

Q = MCΔT

Q = 420 x 3.52 x 43.8

Q = 64753.92 J

Therefore, the heat needed to cause the temperature change is 64753.92 J

4 0
2 years ago
Perform the following
Ghella [55]

Answer:

1.85 × 10⁻⁶

Explanation:

0.0003 ÷ 162 = 1.851851852 × 10⁻⁶ ⇒ 1.85 × 10⁻⁶

Hope that helps.

4 0
2 years ago
What is the hybridization of the central atom in each of the following? 1. Beryllium chloride 2. Nitrogen dioxide 3. Carbon tetr
Lina20 [59]

Answer :

(1) The hybridization of central atom beryllium in BeCl_2  is, sp

(2) The hybridization of central atom nitrogen in NO_2  is, sp^2

(3) The hybridization of central atom carbon in CCl_4  is, sp^3

(4) The hybridization of central atom xenon in XeF_4  is, sp^3d^2

Explanation :

Formula used  :

\text{Number of electron pair}=\frac{1}{2}[V+N-C+A]

where,

V = number of valence electrons present in central atom

N = number of monovalent atoms bonded to central atom

C = charge of cation

A = charge of anion

Now we have to determine the hybridization of the following molecules.

(1) The given molecule is, BeCl_2

\text{Number of electrons}=\frac{1}{2}\times [2+2]=2

The number of electron pair are 2 that means the hybridization will be sp and the electronic geometry of the molecule will be linear.

(2) The given molecule is, NO_2

\text{Number of electrons}=\frac{1}{2}\times [4]=2

If the sum of the number of sigma bonds, lone pair of electrons and odd electrons present is equal to three then the hybridization will be, sp^2.

In nitrogen dioxide, there are two sigma bonds and one lone electron pair. So, the hybridization will be, sp^2.

(3) The given molecule is, CCl_4

\text{Number of electrons}=\frac{1}{2}\times [4+4]=4

The number of electron pair are 4 that means the hybridization will be sp^3 and the electronic geometry of the molecule will be tetrahedral.

(4) The given molecule is, XeF_4

\text{Number of electrons}=\frac{1}{2}\times [8+4]=6

Bond pair electrons = 4

Lone pair electrons = 6 - 4 = 2

The number of electrons are 6 that means the hybridization will be sp^3d^2 and the electronic geometry of the molecule will be octahedral.

But as there are four atoms around the central xenon atom, the fifth and sixth position will be occupied by lone pair of electrons. The repulsion between lone and bond pair of electrons is more and hence the molecular geometry will be square planar.

3 0
2 years ago
Other questions:
  • How many sodium atoms are in 0.1310 g of sodium
    7·2 answers
  • The atomic number of nitrogen is 7. nitrogen-15 has a greater mass number than nitrogen-14 because the atomic nucleus of nitroge
    7·2 answers
  • Draw the structures of the starting materials used to synthesize 3-methylbutyl propanoate. (draw the structures in the single sk
    5·1 answer
  • You are given three bottles labeled a, b, and
    10·1 answer
  • The percentage of silver in a solid sample is determined gravimetrically by converting the silver to Ag+ (aq) and precipitating
    5·2 answers
  • A chemical reaction happens
    9·1 answer
  • a 0.5678 of KHP required 26.64cm³ of NaOH to complete neutralization.calculate the molarity of the NaOH solution​
    8·1 answer
  • Draw the four structures of the compounds with molecular formula C5H10O that contain a carbon-carbon double bond, an unbranched
    12·1 answer
  • In the same condition, what happens to the net force acting on the rope?
    7·1 answer
  • A water treatment tablet contains 20.0 mg of tetraglycine hydroperiodide, 40.0% of which is available as soluble iodine. If two
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!