Dalton's Law of Partial Pressures, commonly applied to ideal gases, explains that the partial pressures of individual, non-reacting gases are equal to the total pressure exerted by the gas mixture. The given gas mixture composed of 90% argon and 10% carbon dioxide has the following partial pressures: 3.6 atm for argon and 0.4 atm for carbon dioxide (answer).
Answer:
Across
2. Conduction.
3. Plates
4. Convection
5. Subduction
7. Earthquake
Down
1. Radioactive
6. Radiation
8. Sink
9. Slabpull
The clues are;
Across:
2. air molecules come in contact with warmer molecules
3. crust are made up of puzzle - like landmass called_____
4. rising and falling movement of material in the mantle
5. when tectonic plates push with each other
7. it is the result of movement of earth's plate
Down:
1. elements that play a vital role in Earth's internal heat
6. least important mode of heat transport
8. warm material rise; cool material______
9. heats build up underneath the crust
Explanation:
The reaction equation will be as follows.

Hence, moles of Na = moles of electron used
Therefore, calculate the number of moles of sodium as follows.
No. of moles = 
=
(as 1 kg = 1000 g)
= 195.65 mol
As, Q =
where F = Faraday's constant
= 
=
mol C
Relation between electrical energy and Q is as follows.
E = 
Hence, putting the given values into the above formula and then calculate the value of electricity as follows.
E = 
= 
= 
As 1 J =
kWh
Hence,
kWh
= 3.39 kWh
Thus, we can conclude that 3.39 kilowatt-hours of electricity is required in the given situation.
Answer: the bonds in the methane and oxygen come apart, the atoms rearrange and then re-bond to form water and carbon dioxide
Explanation:^
Volume = Mass / Density
Volume = 540g / 2.70 g/ml
Volume = 200 ml