<span>What is the molecular formula of a compound containing 25.6g of oxygen, 12.6g of sulfur and 0.4g of hydrogen? The Mr of the compound is 194.2</span>
To find the number of moles of gas we can use the ideal gas law equation, we dont need to use the mass of gas given as we only have to find the number of moles
PV = nRT
P - pressure - 300.0 kPa
V - volume - 25.0 x 10⁻³ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature in Kelvin - 27 °C + 273 = 300 K
substituting these values in the equation
300.0 kPa x 25.0 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 300 K
n = 3.01 mol
number of mols of gas - 3.01 mol
Answer:
Dude its A.Feeding
Explanation:
Its common scene that when u eat you are getting nutrient directly from the food. Come on Sponge Bob Me Boy
The molarity of KBr solution is 1.556 M
molarity is defined as the number of moles of solute in volume of 1 L solution.
the number of KBr moles in 1 L - 1.556 mol
Therefore in 200.0 L - 1.556 mol/L x 200.0 L = 311.2 mol
Molar mass of KBr - 119 g/mol
mass of Kbr - 311.2 mol x 119 g/mol = 37 033 g
mass of solute therefore is 37.033 kg
Answer:
a. electrophilic aromatic substitution
b. nucleophilic aromatic substitution
c. nucleophilic aromatic substitution
d. electrophilic aromatic substitution
e. nucleophilic aromatic substitution
f. electrophilic aromatic substitution
Explanation:
Electrophilic aromatic substitution is a type of chemical reaction where a hydrogen atom or a functional group that is attached to the aromatic ring is replaced by an electrophile. Electrophilic aromatic substitutions can be classified into five classes: 1-Halogenation: is the replacement of one or more hydrogen (H) atoms in an organic compound by a halogen such as, for example, bromine (bromination), chlorine (chlorination), etc; 2- Nitration: the replacement of H with a nitrate group (NO2); 3-Sulfonation: the replacement of H with a bisulfite (SO3H); 4-Friedel-CraftsAlkylation: the replacement of H with an alkyl group (R), and 5-Friedel-Crafts Acylation: the replacement of H with an acyl group (RCO). For example, the Benzene undergoes electrophilic substitution to produce a wide range of chemical compounds (chlorobenzene, nitrobenzene, benzene sulfonic acid, etc).
A nucleophilic aromatic substitution is a type of chemical reaction where an electron-rich nucleophile displaces a leaving group (for example, a halide on the aromatic ring). There are six types of nucleophilic substitution mechanisms: 1-the SNAr (addition-elimination) mechanism, whose name is due to the Hughes-Ingold symbol ''SN' and a unimolecular mechanism; 2-the SN1 reaction that produces diazonium salts 3-the benzyne mechanism that produce highly reactive species (including benzyne) derived from the aromatic ring by the replacement of two substituents; 4-the free radical SRN1 mechanism where a substituent on the aromatic ring is displaced by a nucleophile with the formation of intermediary free radical species; 5-the ANRORC (Addition of the Nucleophile, Ring Opening, and Ring Closure) mechanism, involved in reactions of metal amide nucleophiles and substituted pyrimidines; and 6-the Vicarious nucleophilic substitution, where a nucleophile displaces an H atom on the aromatic ring but without leaving groups (such as, for example, halogen substituents).