answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
cluponka [151]
2 years ago
9

A compound is composed of C, H and O. A 1.621 g sample of this compound was combusted, producing 1.902 g of water and 3.095 g of

CO2. If the molar mass of the compound is 46.06 g/mol, what is its molecular formula?
Chemistry
1 answer:
vlada-n [284]2 years ago
6 0

Answer: The molecular of the compound is, C_2H_3O

Explanation:

The chemical equation for the combustion of hydrocarbon having carbon, hydrogen and oxygen follows:

C_xH_yO_z+O_2\rightarrow CO_2+H_2O

where, 'x', 'y' and 'z' are the subscripts of Carbon, hydrogen and oxygen respectively.

We are given:

Mass of CO_2=3.095g

Mass of H_2O=1.902g

We know that:

Molar mass of carbon dioxide = 44 g/mol

Molar mass of water = 18 g/mol

For calculating the mass of carbon:

In 44 g of carbon dioxide, 12 g of carbon is contained.

So, in 3.095g of carbon dioxide, \frac{12}{44}\times 3.095=0.844g of carbon will be contained.

For calculating the mass of hydrogen:

In 18 g of water, 2 g of hydrogen is contained.

So, in 1.902g of water, \frac{2}{18}\times 1.092=0.121g of hydrogen will be contained.

For calculating the mass of oxygen:

Mass of oxygen in the compound = (1.621)-[(0.844)+(0.121)]=0.656g

To formulate the empirical formula, we need to follow some steps:

Step 1: Converting the given masses into moles.

Moles of Carbon =\frac{\text{Given mass of Carbon}}{\text{Molar mass of Carbon}}=\frac{0.844g}{12g/mole}=0.0703moles

Moles of Hydrogen = \frac{\text{Given mass of Hydrogen}}{\text{Molar mass of Hydrogen}}=\frac{0.121g}{1g/mole}=0.121moles

Moles of Oxygen = \frac{\text{Given mass of oxygen}}{\text{Molar mass of oxygen}}=\frac{0.656g}{16g/mole}=0.041moles

Step 2: Calculating the mole ratio of the given elements.

For the mole ratio, we divide each value of the moles by the smallest number of moles calculated which is 0.041 moles.

For Carbon = \frac{0.0703}{0.041}=1.71\approx 2

For Hydrogen  = \frac{0.121}{0.041}=2.95\approx 3

For Oxygen  = \frac{0.041}{0.041}=1

Step 3: Taking the mole ratio as their subscripts.

The ratio of C : H : O = 2 : 3 : 1

Hence, the empirical formula for the given compound is C_2H_3O_1=C_2H_3O

The empirical formula weight = 2(12) + 3(1) + 1(16) = 43 gram/eq

Now we have to calculate the molecular formula of the compound.

Formula used :

n=\frac{\text{Molecular formula}}{\text{Empirical formula weight}}

n=\frac{46.06}{43}=1

Molecular formula = (C_2H_3O_1)_n=(C_2H_3O_1)_1=C_2H_3O

Therefore, the molecular of the compound is, C_2H_3O

You might be interested in
Rubbing alcohol contains 615g of isopropanol (C3H7OH) per liter (aqueous solution). Calculate the molality of this solution. Giv
faltersainse [42]

Answer:

Solution of isopropanol is 10.25 molal

Explanation:

615 g of isopropanol (C3H7OH) per liter

We gave the information that 615 g of solute (isopropanol) are contained in 1L of water. We need to find out the mass of solvent, so we use density.

Density of water 1g/mL → Density = Mass of water / 1000 mL of water

Notice we converted the L to mL

Mass of water = 1000 g (which is the same to say 1kg)

Molality are the moles of solute in 1kg of solvent, so let's convert the moles of isopropanol  → 615 g . 1mol / 60g = 10.25 moles

Molality (mol/kg) = 10.25 moles / 1kg = 10.25 m

4 0
2 years ago
Consider a general reaction A ( aq ) enzyme ⇌ B ( aq ) A(aq)⇌enzymeB(aq) The Δ G ° ′ ΔG°′ of the reaction is − 5.980 kJ ⋅ mol −
Grace [21]

Answer : The value of K_{eq} is, 11.2

The value of \Delta G_{rxn} is -9.04 kJ/mol

Explanation :

The relation between the equilibrium constant and standard Gibbs free energy is:

\Delta G^o=-RT\times \ln K_{eq}

where,

\Delta G^o = standard Gibbs free energy  = -5.980 kJ/mol = -5980 J/mol

R = gas constant = 8.314 J/K.mol

T = temperature = 25^oC=273+25=298K

K_{eq}  = equilibrium constant  = ?

Now put all the given values in the above formula, we get:

\Delta G^o=-RT\times \ln K_{eq}

-5980J/mol=-(8.314J/K.mol)\times (298K)\times \ln K_{eq}

K_{eq}=11.2

Thus, the value of K_{eq} is, 11.2

Now we have to calculate the \Delta G_{rxn}.

The formula used for \Delta G_{rxn} is:

The given reaction is:

A(aq)\rightleftharpoons B(aq)

\Delta G_{rxn}=\Delta G^o+RT\ln Q

\Delta G_{rxn}=\Delta G^o+RT\ln \frac{[B]}{[A]}    ............(1)

where,

\Delta G_{rxn} = Gibbs free energy for the reaction  = ?

\Delta G_^o =  standard Gibbs free energy  = -30.5 kJ/mol

R = gas constant = 8.314\times 10^{-3}kJ/mole.K

T = temperature = 37.0^oC=273+37.0=310K

Q = reaction quotient

[A] = concentration of A = 1.8 M

[B] = concentration of B = 0.55 M

Now put all the given values in the above formula 1, we get:

\Delta G_{rxn}=(-5980J/mol)+[(8.314J/mole.K)\times (310K)\times \ln (\frac{0.55}{1.8})

\Delta G_{rxn}=-9035.75J/mol=-9.04kJ/mol

Therefore, the value of \Delta G_{rxn} is -9.04 kJ/mol

3 0
2 years ago
In a hexagonal-close-pack (hcp) unit cell, the ratio of lattice points to octahedral holes to tetrahedral holes is 1:1:2. What i
Alex777 [14]

Explanation:

In a hexagonal-close-pack (HCP) unit cell, the ratio of lattice points to octahedral holes to tetrahedral holes =  1 : 1 : 2

let the :

Number of lattice point = 1x.

Number of octahedral points = 1x

Number of tetrahedral  points = 2x

If anions occupy the HCP lattice points and cations occupy half of the tetrahedral holes.

Number of anions occupying the HCP lattice points, A= 1x

Number of cations occupying the tetrahedral points, B =  \frac{2x}{2}=x

The formula of the compound will be = A_{1x}B_{1x}=AB

If anions occupy the HCP lattice points and cations occupy all of the tetrahedral holes.

Number of anions occupying the HCP lattice points, A= 1x

Number of cations occupying the tetrahedral points, B =  2x

The formula of the compound will be = A_{1x}B_{2x}=AB_2

6 0
2 years ago
What vitamin a compounds bind with opsin to form rhodopsin??
irina [24]
The organic compound retinal binds with opsin and forms rhodopsin. Retinal is part of the molecule that is responsible for its color. This part is called chromophore. On the other hand, opsins are the proteins in photoreceptor cells. Retinal bounds with these opsins and forms rhodopsin: the basis of the human vision. Rhodopsin is also a protein.It is the pigment in the retinas of humans and animals.
7 0
2 years ago
When 13.6 g of calcium chloride, CaCl2, was dissolved in 100.0 mL of water in a coffee cup calorimeter, the temperature rose fro
DanielleElmas [232]

Answer:

THE ENTHALPY OF SOLUTION IS 3153.43 J/MOL OR 3.15 KJ/MOL.

Explanation:

1. write out the variables given:

Mass of Calcium chloride = 13.6 g

Change in temperature = 31.75°C - 25.00°C = 6.75 °C

Density of the solution = 1.000 g/mL

Volume = 100.0 mL = 100.0 mL

Specific heat of water = 4.184 J/g °C

Mass of the water = unknown

2. calculate the mass of waterinvolved:

We must first calculate the mass of water in the bomb calorimeter

Mass = density  * volume

Mass = 1.000 * 100

Mass = 0.01 g

3. calculate the quantity of heat evolved:

Next is to calculate the quantity of heat evolved from the reaction

Heat = mass * specific heat of water * change in temperature

Heat = mass of water * specific heat *change in temperature

Heat = 13.6 g * 4.184 * 6.75

Heat = 13.6 g * 4.184 J/g °C * 6.75 °C

Heat = 384.09 J

Hence, 384.09J is the quantity of heat involved in the reaction of 13.6 g of calcium chloride in the calorimeter.

4. calculate the molar mass of CaCl2:

Next is to calculate the molar mas of CaCl2

Molar mass = ( 40 + 35.5 *2) = 111 g/mol

The number of moles of 13.6 g of CaCl2 is then:

Number of moles of CaCl2 = mass / molar mass

Number of moles = 13.6 g / 111 g/mol

Number of moles = 0.1225 mol

So 384.09 J of heat was involved in the reaction of 1.6 g of CaCl2 in a calorimter which translates to 0.1225 mol of CaCl2..

5. Calculate the enthalpy of solution in kJ/mol:

If 1 mole of CaCl2 is involved, the heat evolved is therefore:

Heat per mole = 384.09 J / 0.1225 mol

Heat = 3 135.43 J/mol

The enthalpy of solution is therefore 3153.43 J/mol or 3.15 kJ/mol.

5 0
2 years ago
Other questions:
  • How many kilowatt-hours of electricity are used to produce 4.50 kg of magnesium in the electrolysis of molten mgcl2 with an appl
    7·1 answer
  • Please Help Potassium sulfate has a solubility of 15g/100g water at 40 Celsius. A solution is prepared by adding 39.0g of potass
    10·1 answer
  • The reaction below has an equilibrium constant kp=2.2×106 at 298 k. 2cof2(g)⇌co2(g)+cf4(g) calculate kp for the reaction below.
    15·2 answers
  • Given the equation: ch4 + br2 → ch3br + hbr which type of reaction does this equation represent
    11·2 answers
  • The table shows the amount of radioactive element remaining in a sample over a period of time.
    5·1 answer
  • let 4 moles of methanol (liquid) combust in 3 moles of gaseous oxygen to form gaseous carbon dioxide and water vapor. Suppose th
    12·1 answer
  • What is the limiting reactant for the following reaction given we have 3.4 moles of Ca(NO3)2 and 2.4 moles of Li3PO4?Reaction: 3
    7·2 answers
  • If the standard free energy change for the conversion of fructopyranose to fructofuranose is 1.7 kJ/mol, what fraction of the to
    5·1 answer
  • A 110.0-g sample of metal at 82.00°C is added to 110.0 g of H2O(l) at 27.00°C in an insulated container. The temperature rises t
    12·2 answers
  • A 5 gram piece of aluminum foil at 100 degrees C is dropped into a 25 gram container of water at 20 degrees C. What is the final
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!