answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
2 years ago
5

Just Lemons Lemonade Recipe Equation:

Chemistry
1 answer:
zalisa [80]2 years ago
7 0

Answer:

Explanation:

Hello!

<em>Complete text:</em>

<em>Honors Stoichiometry Activity WorksheetInstructions: </em>

<em>Activity Two: Just Lemons, Inc. Production</em>

<em>Here's a one-batch sample of Just Lemons lemonade production. Determine the percent yield and amount of leftover ingredients for lemonade production and place your answers in the data chart.</em>

<em>Hint: Complete stoichiometry calculations for each ingredient to determine the theoretical yield. Complete a limiting reactant-to-excess reactant calculation for both excess ingredients. </em>

<em>Water 946.36 g </em>

<em>Sugar 196.86 g </em>

<em>Lemon Juice 193.37 g </em>

<em>Lemonade 2050.25g</em>

<em>Leftover Ingredients?</em>

<em>Just Lemons Lemonade Recipe Equation:</em>

<em>2 water + sugar + lemon juice = 4 lemonade</em>

<em>Mole conversion factors:</em>

<em>1 mole of water = 1 cup = 236.59 g</em>

<em>1 mole of sugar = 1 cup = 225 g</em>

<em>1 mole of lemon juice = 1 cup = 257.83 g</em>

<em>1 mole of lemonade = 1 cup = 719.42 g</em>

You have the information on the ingredients used to produce one batch of lemonade and the amount of lemonade produced. To determine which ingredients be leftovers, you have to determine first, which one is the limiting reactant, i.e. the ingredient that will be used up first.

According to the recipe, to make 4 moles of lemonade, you use 2 moles of water, one mole of sugar and one mole of lemon juice, expressed in grams:

2 water  + sugar + lemon juice = 4 lemonade

2*(236.59) + 225g + 257.83g  = 4*(719.42)g

    473.18g + 225g + 257.83g = 2877.68g

So for every 2877.68g of lemonade made, they use 473.18g of water, 225g of sugar, and 257.83g of lemon juice.

You know that they made a batch of 2050.25g, so to detect the limiting reactant, first, you have to calculate, in theory, how much of each ingredient you need to make the given amount of lemonade:

Use cross multiplication

<u>Water:</u>

2877.68g lemonade → 473.18g water

2050.25g lemonade → X= (2050.25*473.18)/2877.68= 337.12g water

Following the recipe, to elaborate 2050.25g of lemonade, you need to use 337.12g of water.

<u>Sugar:</u>

2877.68g lemonade → 225g sugar

2050.25g lemonade → X= (2050.25*225)/2877.68= 160.30g sugar.

To elaborate 2050.25f of lemonade you need to use 160.30g of sugar.

<u>Lemon juice:</u>

2877.68g lemonade → 257.83g lemon juice

2050.25g lemonade → X= (2050.25*257.83)/2877.68= 183.69g lemon juice.

To elaborate 2050.25f of lemonade you need to use 183.69g lemon juice.

Available ingredients vs. theoretical yields for 2050.25g of lemonade:

Water 946.36 g → 337.12g

Sugar 196.86 g → 160.30g

Lemon Juice 193.37 g → 183.69g

The lemon juice will be the first ingredient to be used up, there will be a surplus of water and sugar.

I hope this helps!

You might be interested in
Determine the normality of the following solutions note the species of interest is H 95 g of PO4 3- in 100mL solution
Aliun [14]

Answer : The normality of the solution is, 30.006 N

Explanation :

Normality : It is defined as the number of gram equivalent of solute present in one liter of the solution.

Mathematical expression of normality is:

\text{Normality}=\frac{\text{Gram equivalent of solute}}{\text{Volume of solution in liter}}

or,

\text{Normality}=\frac{\text{Weight of solute}}{\text{Equivalent weight of solute}\times \text{Volume of solution in liter}}

First we have to calculate the equivalent weight of solute.

Molar mass of solute PO_4^{3-} = 94.97 g/mole

\text{Equivalent weight of solute}=\frac{\text{Molar mass of solute}}{\text{charge of the ion}}=\frac{94.97}{3}=31.66g.eq

Now we have to calculate the normality of solution.

\text{Normality}=\frac{95g}{31.66g.eq\times 0.1L}=30.006eq/L

Therefore, the normality of the solution is, 30.006 N

5 0
2 years ago
This stadium can hold 100,000, or 1 x 105, people. The number of atoms in a grain of iron is about 1 x 1018. Would you need 1 x 
nata0808 [166]
<h3>Answer:</h3>

1 x 10^13 stadiums

<h3>Explanation:</h3>

We are given that;

1 stadium holds = 1 × 10^5 people

Number of iron atoms is 1 × 10^18 atoms

Assuming the stadium would carry an equivalent number of atoms as people.

Then, 1 stadium will carry 1 × 10^5 atoms

Therefore,

To calculate the number of stadiums that can hold 1 × 10^18 atoms we divide the total number of atoms by the number of atoms per stadium.

Number of stadiums = Total number of atoms ÷ Number of atoms per stadium

                                  = 1 × 10^18 atoms ÷ 1 × 10^5 atoms/stadium

                                   = 1 × 10^13 Stadiums

Thus, 1 × 10^18 atoms would occupy 1 × 10^13 stadiums

7 0
2 years ago
An electrically neutral atom of gallium has 31 electrons and 39 neutrons. What is the mass number for an atom of gallium?. A. 31
hammer [34]
If the atom is neutral (meaning, not charged) the number of electron is equal to the number of protons. The mass number of an atom is the sum of the number of proton and the number of neutrons. From the given above, the mass number of gallium is 31 + 39. The answer is letter D. 70.
4 0
2 years ago
Read 2 more answers
Use the information in the square to answer the questions about copper. A purple box has C u at the center and 29 above. Below i
scoray [572]

Answer:

29 protons 29 electrons

34 neutrons or (65-29)=36 neutrons in its nucleus.

6 0
2 years ago
Read 2 more answers
If kc = 7.04 × 10-2 for the reaction: 2 hbr(g) ⇌h2(g) + br2(g), what is the value of kc for the reaction: 1/2 h2(g) + 1/2 br2 ⇌h
Kay [80]
At the first reaction when 2HBr(g) ⇄ H2(g) + Br2(g)
So Kc = [H2] [Br2] / [HBr]^2
7.04X10^-2 = [H2][Br] / [HBr]^2

at the second reaction when 1/2 H2(g) + 1/2 Br2 (g) ⇄ HBr
Its Kc value will = [HBr] / [H2]^1/2*[Br2]^1/2
we will make the first formula of Kc upside down:
1/7.04X10^-2 = [HBr]^2/[H2][Br2]
and by taking the square root: 
∴ √(1/7.04X10^-2)= [HBr] / [H2]^1/2*[Br]^1/2
∴ Kc for the second reaction = √(1/7.04X10^-2) = 3.769 
7 0
2 years ago
Other questions:
  • A gas sample is at 25°C and 1.0 atmosphere. Which changes in temperature and pressure will cause this sample to behave more like
    9·1 answer
  • A 31.3-g sample of ammonium carbonate contains ________ mol of ammonium ions.
    6·2 answers
  • What is the bond angle in a tetrahedral molecule?
    5·2 answers
  • What volume will 12.0 g of oxygen gas occupy at 25 c and a pressure of 52.7 kpa?
    6·1 answer
  • Dehydrohalogenation of tert-pentyl bromide at higher temperatures will produce 2-methyl-1-butene as the chief product when
    12·1 answer
  • Calculate, by explicit summation, the vibrational partition functionand the vibrational contribution to the molar internal energ
    15·1 answer
  • Top-level predators such as wolves and lions are categorized in the highest trophic levels in their food webs Where does the ene
    8·2 answers
  • Which option describes energy being released as heat?
    11·2 answers
  • 5. Rubbing alcohol is a commonly used disinfectant and has a cooling effect when applied to the skin. The active ingredient in r
    12·1 answer
  • Sodium metal reacts with chlorine gas in a combination reaction. Write a balanced equation to describe this reaction. Click in t
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!