In 15 minutes 3 cells will be reproduced and in 30 minutes 6 cells will be reproduced
Answer:
Mole fraction of methanol will be closest to 4.
Explanation:
Given, Mass of methanol = 128 g
Molar mass of methanol = 32.04 g/mol
The formula for the calculation of moles is shown below:
Thus,
Given, Mass of water = 108 g
Molar mass of water = 18.0153 g/mol
The formula for the calculation of moles is shown below:
Thus,
So, according to definition of mole fraction:

<u>Mole fraction of methanol will be closest to 4.</u>
Answer: Increases.
Explanation: As the temperature of a liquid or solid increases its vapor pressure also increases. Conversely, vapor pressure decreases as the temperature decreases.
At 15.2°C. Kinetic energy of molecules highly depends on the temperature — the warmer it is, the faster the molecules will move, especially in fluids (gases and liquids). If we consider that the formula for average kinetic energy of molecules is:
Ek = 3/2*k*T where k is Boltzmanns constant and 3/2 is, well, 3/2, kinetic energy of molecules really only depends on the temperature.
Answer:
ΔU=-369.2 kJ/mol.
Explanation:
We start from the equation:
Δ(H)=ΔU+Δ(PV), which is an extension of the well known relation: H=U+PV.
If Δ(PV) were calculated by ideal gas law,
PV=nRT
Δ(PV)=RTΔn.
Where Δn is the change of moles due to the reaction; but, this reaction does not give a moles change (Four moles of HCl produced from 4 moles of reactants), so Δ(PV)=0.
So, for this case, ΔH=ΔU.
The enthalpy of reaction given is for one mole of reactant, so the enthalpy of reaction for the reaction of interest must be multiplied by two:

ΔU=-369.2 kJ/mol.