Answer:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us use the thermodynamic definition of the Gibbs free energy and its relationship with Ksp as follows:

Thus, by combining them, we obtain:

Which is related to the general line equation:

Whereas:

It means that we answer to the blanks as follows:
To determine the enthalpy and entropy of dissolving a compound, you need to measure the Ksp at multiple temperatures. Then, plot ln(Ksp) vs. 1/T. The slope of the plotted line relates to the enthalpy (ΔH) of dissolving and the intercept of the plotted line relates to the entropy (ΔS) of dissolving.
Regards!
Did you take the test? what was the answer Im stuck on this one too
Atomic mass Ni = 58.69 a.m.u
58.69 g ----------------- 6.02x10²³ atoms
?? g --------------------- 7.5x10¹⁵ atoms
58.69x (7.5x10¹⁵) / 6.02x10²³
=> 7.31x10⁻⁷ g
is this for a test or are you genuinely interested? molality = mols sugar/kg solvent
Solve for molality
delta T = Kf*m
Solve for delta T and subtract from zero C to find the new freezing point.
or
-5.58
<span>The statement that most accurately and effectively described the polarity and electronegativity in water is that the covalent bonds within these water molecules bind with the single oxygen atom in the molecule, as well as the two hydrogen atoms that it holds as well.</span>