Answer:
C. 2.000 M C6H12O6
Explanation:
Let us obtain the molarity of the solution.
Molar Mass of C6H12O6 = (12x6) + (12x1) + (16x6) = 72 + 12 + 96 = 180g/mol
Mass of C6H12O6 = 180g
Number of mole = Mass /Molar Mass
Number of mole of C6H12O6 = 180/180 = 1mole
Volume = 500mL = 500/1000 = 0.5L
Molarity = mole /Volume
Molarity = 1/0.5
Molarity = 2M
So the solution will be best labelled as 2M C6H12O6
Answer:
you need to send us the figure
Explanation:
Answer:
pH 9,8 is likely to work best for this separation
Explanation:
Ion exchange chromatography is a chemical process where molecules are separated by affinity to an ion exchange resin. To separate different aminoacids you must use the isoelectric point (That is the pH where the aminoacid will be in its neutral form).
For lysine, PI is:
9,8
For arginine:
10,75
At pH = 9,8 lysine will be in its neutral form and will not be retain in the column but arginine will be in +1 charge being retained by the ion exchange resin.
Thus, <em>pH 9,8 is likely to work best for this separation</em>
<em></em>
I hope it helps!
I believe the correct answer is the first option. To increase the molar concentration of the product N2O4, you should increase the pressure of the system. You cannot determine the effect of changing the temperature since we cannot tell whether it is an endothermic or an exothermic reaction. Also, decreasing the number of NO2 would not increase the product rather it would shift the equilibrium to the left forming more reactants. The only parameter we can change would be the pressure. And, since NO2 takes up more space than the product increasing the pressure would allow the reactant to collide more forming the product.