Explanation:
a) Using the provided information about the density of gold, the sample size, thickness, and the following equations and comersion factors, find the area of the gold leaf:

Gold 

First, find the volume of the sample and then find the area of the sample.


b. Using the provided information from part
), the radius of the cylinder, and the following equation for the volume of a cylinder, find the length of the fiber :


Answer:
B,C,D
Explanation:
The yield of CCl4 depends on the amount of CH4 in a 1:1 ratio. The amount of Cl2 is twice that of CH4 hence some must be left over. To ensure that all the Cl2 is used up, more CH4 must added to the system.
Answer : The volume of the cube submerged in the liquid is, 29.8 mL
Explanation :
First we have to determine the mass of ice.
Formula used :

Given:
Density of ice = 
Volume of ice = 45.0 mL


The cube will float when 40.5 g of liquid is displaced.
Now we have to determine the volume of the cube is submerged in the liquid.



Thus, the volume of the cube submerged in the liquid is, 29.8 mL
Answer:
334J/g
Explanation:
Data obtained from the question include:
Mass (m) = 1g
Specific heat of Fusion (Hf) = 334 J/g
Heat (Q) =?
Using the equation Q = m·Hf, we can obtain the heat released as follow:
Q = m·Hf
Q = 1 x 334
Q = 334J
Therefore, the amount of heat released is 334J
When the amount of heat gained = the amount of heat loss
so, M*C*ΔTloses = M*C* ΔT gained
when here the water is gained heat as the Ti = 25°C and Tf= 28°C so it gains more heat.
∴( M * C * ΔT )W = (M*C*ΔT) Al
when Mw is the mass of water = 100 g
and C the specific heat capacity of water = 4.18
and ΔT the change in temperature for water= 28-25 = 3 ° C
and ΔT the change in temperature for Al = 100-28= 72°C
and M Al is the mass of Al block
C is the specific heat capacity of the block = 0.9
so by substitution:
100 g * 4.18*3 = M Al * 0.9*72
∴ the mass of Al block is = 100 g *4.18 / 0.9*72
= 19.35 g