Answer:
Sample Response: Yes, the law of conservation of momentum is satisfied. The total momentum before the collision is 1.5 kg • m/s and the total momentum after the collision is 1.5 kg • m/s. The momentum before and after the collision is the same.
Explanation:
Sample Response since i just took it on Edg.
To be able to compare the result with other experiments it has to be reported in moles.
number of moles = mass / molecular weight
number of moles of Mg(H₂PO₄)₂ = 600 / 218 = 2.75 moles
Answer:
See explanation
Explanation:
Hydrogen has a valency of +1 or -1. Its electronic configuration is 1s1.
The 1s sub-level (first shell) is known to hold two electrons. This means that hydrogen may either loose this one electron in the 1s level to yield H^+ or accept another electron into this 1s level to form H^- (the hydride ion).
The formation of the hydride ion completes the 1s orbital.
One mole any substance contains 6.022 ₓ 10²³ particles called Avogadro's Number.
The relation between moles and number of particles is given as,
# of particles = moles ₓ Avogadro's number
In our case the particles are formula units of MgCO₃. So, 1 mole of MgCO₃ contain 6.022 ₓ 10²³ formula units, then the number of formula units in 1.72 moles are calculated as,
# of formula units = 1.72 mol ₓ 6.022 ₓ 10²³ formula units / mol
# of formula units = 1.035 ₓ 10²⁴ Formula Units