The red bottle would have the lowest frequency because red light has the longest wavelengths. The light passing through the violet would have the highest frequency because its wavelengths are the shortest.
Answer:
Strong acids and bases both denature proteins by severing disulphide bonds and at higher temperatures, can break proteins into peptides, or even individual amino acids.
Answer:
a) The structure of anthracene is planar with all the pi electrons delocalized in the structure to maintain aromaticity.
b) The C-C bond length in anthracene is about 140 pm with all the bond lengths being similar to each other.
The standard C-C bond length is 154 pm while standard C=C bond is about 134 pm. Therefore the bond length in anthracene is smaller than standard C-C bond length and longer than standard C=C bond length. This can be explained from the fact that the C-C bonds in anthracene has be mixed characteristics of single and double bond because of the delocalization of pi electrons over the whole structure. As a result, they are neither fully single nor fully double bond in nature. Hence the observed bond lengths.
c) This molecule is not flat. The N-atom is sp3 hybridized here and the H-atom attached to N will remain out of plane.
Explanation:
Answer: V= 3.13 L
Explanation: solution attached:
Use combine gas law equation:
P1 V1 / T1 = P2 V2/ T2
Derive to find V2
V2 = P1 V1 T2 / T1 P2
Convert temperatures in K
T1= 13.0°C + 273 = 286 K
T2= 22.5°C + 273 = 295.5 K
Substitute the values.
Answer:

Explanation:
Hello,
In this case, since iron (III) chloride (FeCl3) and barium chloride (BaCl2) are both chloride-containing compounds, we can compute the moles of chloride from each salt, considering the concentration and volume of the given solutions, and using the mole ratio that is 1:3 and 1:2 for the compound to chlorine:

So the total mole of chloride ions:

And the total volume by adding the volume of each solution in L:

Finally, the molarity turns out:

Best regards.