Answer : The combustion is a process in which oxygen is released as a by-product of oxidation-reduction reactions.
Explanation :
Combustion reaction : It is defined as the reactions in which a hydrocarbon reacts with oxygen gas to produce carbon dioxide and water.
The chemical equation of combustion reaction is:

The combustion reaction is also a redox reaction.
Redox reaction or Oxidation-reduction reaction : It is defined as the reaction in which the oxidation and reduction reaction takes place simultaneously.
Oxidation reaction : It is defined as the reaction in which a substance looses its electrons. In this, oxidation state of an element increases. Or we can say that in oxidation, the loss of electrons takes place.
Reduction reaction : It is defined as the reaction in which a substance gains electrons. In this, oxidation state of an element decreases. Or we can say that in reduction, the gain of electrons takes place.
The combustion reaction is also a redox reaction in which the carbon shows oxidation by the addition of oxygen or removal of hydrogen and oxygen shows reduction by the addition of hydrogen or removal of oxygen.
Hence, the combustion is a process in which oxygen is released as a by-product of oxidation-reduction reactions.
Answer: electrons
Explanation: moving electrons cause momentarily charge
Distribution on molecule. This distribution induces similar distribution to
Adjacent molecule.
Answer:
- 0.0249% Sb/cm

Explanation:
Given that:
One surface contains 1 Sb atom per 10⁸ Si atoms and the other surface contains 500 Sb atoms per 10⁸ Si atoms.
The concentration gradient in atomic percent (%) Sb per cm can be calculated as follows:
The difference in concentration = 
The distance
= 0.2-mm = 0.02 cm
Now, the concentration of silicon at one surface containing 1 Sb atom per 10⁸ silicon atoms and at the outer surface that has 500 Sb atom per 10⁸ silicon atoms can be calculated as follows:

= - 0.0249% Sb/cm
b) The concentration
of Sb in atom/cm³ for the surface of 1 Sb atoms can be calculated by using the formula:

Lattice parameter = 5.4307 Å; To cm ; we have
= 

= 
The concentration
of Sb in atom/cm³ for the surface of 500 Sb can be calculated as follows:

= 
= 
Finally, to calculate the concentration gradient



<u>Answer:</u>
P2 = 778.05 mm Hg = 1.02 atm
<u>Explanation:</u>
We are to find the final pressure (expressed in atm) of a 3.05 liter system initially at 724 mm hg and 298 K which is compressed to a final volume of 2.60 liter at 273 K.
For this, we would use the equation:

where P1 = 724 mm hg
V1 = 3.05 L
T1 = 298 K
P2 = ?
V2 = 2.6 L
T2 = 173 K
Substituting the given values in the equation to get:

P2 = 778.05 mm Hg = 1.02 atm