Answer:
C₂H₇F₂P
Explanation:
Given parameters:
Composition by mass:
C = 24%
H = 7%
F = 38%
P = 31%
Unknown:
Empirical formula of compound;
Solution :
The empirical formula is the simplest formula of a compound. To solve for this, follow the process below;
C H F P
% composition
by mass 24 7 38 31
Molar mass 12 1 19 31
Number of
moles 24/12 7/1 38/19 31/31
2 7 2 1
Dividing
by the
smallest 2/1 7/1 2/1 1/1
2 7 2 1
Empirical formula C₂H₇F₂P
There are several ways to visually represent compounds. For this particular organic compound, we can use the skeletal formula and the expanded formula. The skeletal makes use of lines to show which atoms are bonded to each other. The expanded formula shows the species of the atoms and their bonding with other atoms. I have attached the two representations.
Answer:
C
Explanation:
It looks pretty reasonable to me
Answer:
Molar concentration of the weak acid solution is 0.0932
Explanation:
Using the formula: 
Where Ca = molarity of acid
Cb = molarity of base = 0.0981 M
Va = volume of acid = 25.0 mL
Vb = volume of base = 23.74 mL
na = mole of acid
nb = mole of base
Since the acid is monopromatic, 1 mole of the acid will require 1 mole of NaOH. Hence, na = nb = 1
Therefore, 
Ca = 0.0981 x 23.74/25.0
= 0.093155 M
To 4 significant figure = 0.0932 M
Answer:
k = 1.3 x 10⁻³ s⁻¹
Explanation:
For a first order reaction the integrated rate law is
Ln [A]t/[A]₀ = - kt
where [A] are the concentrations of acetaldehyde in this case, t is the time and k is the rate constant.
We are given the half life for the concentration of acetaldehyde to fall to one half its original value, thus
Ln [A]t/[A]₀ = Ln 1/2[A]₀/[A]₀= Ln 1/2 = - kt
- 0.693 = - k(530s) ⇒ k = 1.3 x 10⁻³ s⁻¹