Answer:
The correct answer is Option A (There is no magnetic flux through the wire loop.)
Explanation:
Magnetic flux measures the entire magnetic field that passes through the wire loop.
The right hand rule can be demonstrated on how magnetic flux is generated through the moving current in the wire loop. The magnetic flux through the wire loop will decrease as it moves upward through the magnetic field region.
If the direction of the vector area of the wire loop is to the right, and the switch is closed, it will push the magnetic flux to the right which will now be increased due to an equal increase in the current in the wire loop. But, when the switch is open, this will halt the movement of current through the wire loop thus affecting the generation of magnetic field. This would make the magnetic flux to be zero.
We first need to find the number of moles of gas in the container
PV = nRT
where;
P - pressure - 2.87 atm x 101 325 Pa/atm = 290 802.75 Pa
V - volume - 5.29 x 10⁻³ m³
n - number of moles
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 230 K
substituting these values in the equation
290 802.75 Pa x 5.29 x 10⁻³ m³ = n x 8.314 Jmol⁻¹K⁻¹ x 230 K
n = 0.804 mol
the molar mass = mass present / number of moles
molar mass of gas = 56.75 g / 0.804 mol
therefore molar mass is 70.6 g/mol
The student should use the graduated cylinder. A graduated is the most common laboratory glassware when measuring volumes. It has calibrations by 1, 0.5 or 0.1 depending on the maximum volume. You have to make sure though, that you measure the volume by looking at the lower meniscus of the liquid at eye level.
The temperature will change from 100K to 173.87 K
calculation
by use of law that is V1/T1=V2/T2
V1=3.75 L
T1=100k
V2=6.53 L
T2=?
make T2 the subject of the formula
T2=(V2 xT1)V1
=6.52 x100/3.75=173.87K
Answer:
Approximately 0.126 M
Explanation:
For the calculation of the dilution you take into account the moles of NaOH in the 42.1mL of the original solution and you use the new volume of 342.1 mL:

The standardization is necessary because a beaker is not not an instrument used to measure volumes and the marks on it only give an estimate of the volume of the solution, they are used to contain solutions and carry reactions among other things. If you would have measured the water with a graduated cylinder (an instrument designed to measure volumes) the standardization wouldnt be that necessary.