Sodium Chloride because its still a liquid at the 773 temperature mark<span />
<u>Answer:</u> The value of
for the given reaction is 1.435
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

Given mass of
= 9.2 g
Molar mass of
= 92 g/mol
Volume of solution = 0.50 L
Putting values in above equation, we get:

For the given chemical equation:

<u>Initial:</u> 0.20
<u>At eqllm:</u> 0.20-x 2x
We are given:
Equilibrium concentration of
= 0.057
Evaluating the value of 'x'

The expression of
for above equation follows:
![K_c=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
![[NO_2]_{eq}=2x=(2\times 0.143)=0.286M](https://tex.z-dn.net/?f=%5BNO_2%5D_%7Beq%7D%3D2x%3D%282%5Ctimes%200.143%29%3D0.286M)
![[N_2O_4]_{eq}=0.057M](https://tex.z-dn.net/?f=%5BN_2O_4%5D_%7Beq%7D%3D0.057M)
Putting values in above expression, we get:

Hence, the value of
for the given reaction is 1.435
Answer and Explanation:
The equation that depicts oxidation of neutral atom A is shown below:

This is because one species is losing electrons due to oxidation. The species possesses positively charged after losing electrons, the magnitude of which is proportional to the number of electrons lost.
The net charge will be equivalent on both sides of the equation, too.
Therefore all other options are not correct
The equation that depicts the decline of neutral atom X is

It is how a cell gains electrons by reduction. The species obtains a negative charge upon possessing electrons, whose magnitude is equivalent to the amount of electrons gained.
The net charge will be equivalent on both sides of the equation, too.
Therefore all other options are not correct
Polarity of a molecule doesn't depend only on the presence of certain atom(s). It also depends on symmetry. For example, take the alkanes family

. These molecules are generally nonpolar, because there is no net dipole moment. Now, dipole moment arises due to <span>difference in the electronegativity of carbon and the other element. In organic chemistry, generally these atoms are Oxygen, Halogens, Nitrogen. Because of their high electronegativity, they cause a net dipole moment resulting in polarity.
</span>

is symmetrical and hence non-polar.

is asymmetrical and polar. It's structure is bent because of oxygen lone pairs.
2 Ionic bonds form between metal atoms and nonmetal atoms.
4 The less electronegative atoms transfers one or more electrons to the more electronegative atom.
5 The metal atom forms a cation and the nonmetal atom forms an anion.
7 The attraction between ions with an opposite charge forms an ionic bond.