Hello there!
To determine the fraction of the hydrogen atom's mass that is in the nucleus, we have to keep in mind that
a Hydrogen atom has 1 proton and 1 electron.
Protons are in the nucleus while electrons are in electron shells surrounding the nucleus.
The mass of the nucleus will be equal to the mass of 1 proton and we can express the fraction as follows:

So, the fraction of the hydrogen atom's mass that is in the nucleus is
0,9995. That means that almost all the mass of this atom is at the nucleus.
Have a nice day!
Answer:
HOMO of 1,3-butadiene and LUMO of ethylene
HOMO of ethylene LUMO of 1,3-butadiene
Explanation:
1,3 - butadiene underogoes cycloaddition reaction with ethylene to give cyclohexene.
According to Frontier molecular orbital theory HOMO of 1,3 butadiene and LUMO of ethylene and HOMO of ethylene and LUMO of ethylene underoges (4 + 2) in thermal or photochemical condition.
Answer D. Follow Le Chatelier's principle.
Specific heat capacity is the required amount of heat per unit of mass in order to raise teh temperature by one degree Celsius. It can be calculated from this equation: H = mCΔT where the H is heat required, m is mass of the substance, ΔT is the change in temperature, and C is the specific heat capacity.
H = m<span>CΔT
2501.0 = 0.158 (C) (61.0 - 32.0)
C = 545.8 J/kg</span>·°C
Answer:

Explanation:
Hello,
In this case, we can compute the change in the solution enthalpy by using the following formula:

Whereas the mass of the solution is 350 g, the specific heat capacity is 4.184 J/g °C and the change in the temperature is 1.34 °C, therefore, we obtain:

It is important to notice that the mass is just 350 g that is the reacting amount and by means of the law of the conservation of mass, the total mass will remain constant, for that reason we compute the change in the enthalpy as shown above, which is positive due to the temperature raise.
Best regards.