Answer: Mass of zinc that reacts with 4.11 g of hydrochloric acid to form 9.1 g of zinc chloride and 3.97 g of hydrogen gas is 8.96 g
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Given: mass of hydrochloric acid = 4.11 g
Mass of products = Mass of zinc chloride + mass of hydrogen = 9.1 g + 3.97 g = 13.07 g
As mass of reactant = mass of products
mass of hydrochloric acid + mass of zinc = Mass of zinc chloride + mass of hydrogen
4.11 g + mass of zinc = 13.07 g
mass of zinc = 8.96 g
Hi, you have not provided structure of the aldehyde and alkoxide ion.
Therefore i'll show a mechanism corresponding to the proton transfer by considering a simple example.
Explanation: For an example, let's consider that proton transfer is taking place between a simple aldehyde e.g. acetaldehyde and a simple alkoxide base e.g. methoxide.
The hydrogen atom attached to the carbon atom adjacent to aldehyde group are most acidic. Hence they are removed by alkoxide preferably.
After removal of proton from aldehyde, a carbanion is generated. As it is a conjugated carbanion therefore the negative charge on carbon atom can conjugate through the carbonyl group to form an enolate which is another canonical form of the carbanion.
All the structures are shown below.
Answer:MnCO3+2H2O----->MnO2+ HCO3-+2e-+3H+
Explanation:The equation to be balanced is
MnCO3 ------> MnO2+HCO3-
The oxidation number of Mn changes from +2 in MnCO3 to +4 in MnO2
Therefore two electrons must be added to the right as shown below:
MnCO3 -------> MnO2+ HCO3-+ 2e-Now,there is one negative charge HCO3- and 1 negative charge on the two electrons making a total of -3 charges on the right. There is zero charge on the left.
To balance the equation,add3H+on the right,to cancel out the charges.
MnCO3 --------> MnO2+HCO3-+2e-+3H+
Adding H2O to balance Hydrogen and Oxygen atoms:
MnCO3+2H2O ------->MnO2+HCO3-+2e-+3H+
<span>100.
ppb of chcl3 in drinking water means 100 g of CHCl3 in 1,000,0000,000 g of water
Molarity, M
M = number of moles of solute / volume of solution in liters
number of moles of solute = mass of CHCl3 / molar mass of CHCl3
molar mass of CHCl3 = 119.37 g/mol
number of moles of solute = 100 g / 119.37 g/mol = 0.838 mol
using density of water = 1 g/ ml => 1,000,000,000 g = 1,000,000 liters
M = 0.838 / 1,000,000 = 8.38 * 10^ - 7 M <----- answer
Molality, m
m = number of moles of solute / kg of solvent
number of moles of solute = 0.838
kg of solvent = kg of water = 1,000,000 kg
m = 0.838 moles / 1,000,000 kg = 8.38 * 10^ - 7 m <----- answer
mole fraction of solute, X solute
X solute = number of moles of solute / number of moles of solution
number of moles of solute = 0.838
number of moles of solution = number of moles of solute + number of moles of solvent
number of moles of solvent = mass of water / molar mass of water = 1,000,000,000 g / 18.01528 g/mol = 55,508,435 moles
number of moles of solution = 0.838 moles + 55,508,435 moles = 55,508,436 moles
X solute = 0.838 / 55,508,435 = 1.51 * 10 ^ - 8 <------ answer
mass percent, %
% = (mass of solute / mass of solution) * 100 = (100g / 1,000,000,100 g) * 100 =
% = 10 ^ - 6 % <------- answer
</span>
You can view more details on each measurement unit: molecular weight of Lithium Carbonate or grams The molecular formula for Lithium Carbonate is Li2CO3. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles Lithium Carbonate, or 73.8909 grams.