Answer:
0.192 mol.
Explanation:
- To calculate the no. of moles of a substance (n), we use the relation:
<em>n = mass / molar mass.</em>
mass of AsH₃ = 15.0 g.
molar mass of AsH₃ = 77.95 g/mol.
∴ The number of moles in 15.0 g AsH₃ = mass / molar mass = (15.0 g) / (77.95 g/mol) = 0.192 mol.
When heat energy is supplied to a material it can raise the temperature of mass of the material.
Specific heat is the amount of energy required by 1 g of material to raise the temperature by 1 °C.
equation is
H = mcΔt
H - heat energy
m - mass of material
c - specific heat of the material
Δt - change in temperature
substituting the values in the equation
120 J = 10 g x c x 5 °C
c = 2.4 Jg⁻¹°C⁻¹
Answer:
In 1000 ml there is 0.10 moles of Fe 2+
Therefore, in 10 ml there is (0.1/1000)*10= 0.001 mol of Fe2+
mole ratio for rxn Fe2+ : MnO4- is
1 : 2
therefore if 0.001 moles of Fe2+ react then 0.001*2 =0.002 moles of MnO4- react with Fe2+
hence, molarity of MnO4- = (mol*vol)/1000
= 0.002*10.75/1000= 2.15*10-5M
Explanation:
Hope this helps
Answer:
Chemists make observations on the macroscopic a scale that lead to conclusions about microscopic features
Explanation:
Many important chemical observations are made on the macroscopic scale. This is because, many of the scientific equipments available are not presently able to provide direct evidence about microscopic processes. Evidences obtained from macroscopic observations could serve as important insights into the nature of certain microscopic processes.
This is evident in the study of the structure of the atom. Most of the evidences that led to the deduction of the atomic structure were obtained from macroscopic evidence but ultimately provided important information about the microscopic structure of the atom.