Answer:
334J/g
Explanation:
Data obtained from the question include:
Mass (m) = 1g
Specific heat of Fusion (Hf) = 334 J/g
Heat (Q) =?
Using the equation Q = m·Hf, we can obtain the heat released as follow:
Q = m·Hf
Q = 1 x 334
Q = 334J
Therefore, the amount of heat released is 334J
Answer:
The pH of 0.1 M BH⁺ClO₄⁻ solution is <u>5.44</u>
Explanation:
Given: The base dissociation constant:
= 1 × 10⁻⁴, Concentration of salt: BH⁺ClO₄⁻ = 0.1 M
Also, water dissociation constant:
= 1 × 10⁻¹⁴
<em><u>The acid dissociation constant </u></em>(
)<em><u> for the weak acid (BH⁺) can be calculated by the equation:</u></em>

<em><u>Now, the acid dissociation reaction for the weak acid (BH⁺) and the initial concentration and concentration at equilibrium is given as:</u></em>
Reaction involved: BH⁺ + H₂O ⇌ B + H₃O+
Initial: 0.1 M x x
Change: -x +x +x
Equilibrium: 0.1 - x x x
<u>The acid dissociation constant: </u>![K_{a} = \frac{\left [B \right ] \left [H_{3}O^{+}\right ]}{\left [BH^{+} \right ]} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^{2}}{0.1 - x}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5Cleft%20%5BB%20%5Cright%20%5D%20%5Cleft%20%5BH_%7B3%7DO%5E%7B%2B%7D%5Cright%20%5D%7D%7B%5Cleft%20%5BBH%5E%7B%2B%7D%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B%28x%29%28x%29%7D%7B%280.1%20-%20x%29%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B0.1%20-%20x%7D)





<u>Therefore, the concentration of hydrogen ion: x = 3.6 × 10⁻⁶ M</u>
Now, pH = - ㏒ [H⁺] = - ㏒ (3.6 × 10⁻⁶ M) = 5.44
<u>Therefore, the pH of 0.1 M BH⁺ClO₄⁻ solution is 5.44</u>
Answer:
2.4 ×10^24 molecules of the herbicide.
Explanation:
We must first obtain the molar mass of the compound as follows;
C3H8NO5P= [3(12) + 8(1) + 14 +5(16) +31] = [36 + 8 + 14 + 80 + 31]= 169 gmol-1
We know that one mole of a compound contains the Avogadro's number of molecules.
Hence;
169 g of the herbicide contains 6.02×10^23 molecules
Therefore 669.1 g of the herbicide contains 669.1 × 6.02×10^23/ 169 = 2.4 ×10^24 molecules of the herbicide.
Answer:
The equation for the rate of this reaction is R = [NO] + {O2}
Explanation:
The rate-determining step of a reaction is the slowest step of a chemical reaction which determines the rate (speed) at which the overall reaction would take place.
Reaction mechanism:
The slow and fast reactions both have NO3 which is cancelled out on both sides, in order to get the overall reaction.
The rate law for this reaction would be that for the rate determining step:
R = [NO] + {O2}